|
SIGMA 8 (2012), 084, 15 pages arXiv:1211.1762
https://doi.org/10.3842/SIGMA.2012.084
Quasi-Grammian Solutions of the Generalized Coupled Dispersionless Integrable System
Bushra Haider and Mahmood-ul Hassan
Department of Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
Received June 22, 2012, in final form October 10, 2012; Published online November 08, 2012
Abstract
The standard binary Darboux transformation is investigated
and is used to obtain quasi-Grammian multisoliton solutions of the
generalized coupled dispersionless integrable system.
Key words:
integrable systems; binary Darboux transformation; quasideterminants.
pdf (893 kb)
tex (506 kb)
References
- Aoyama S., Kodama Y., Topological conformal field theory with a rational W
potential and the dispersionless KP hierarchy, Modern Phys.
Lett. A 9 (1994), 2481-2492, hep-th/9404011.
- Carroll R., Kodama Y., Solution of the dispersionless Hirota equations,
J. Phys. A: Math. Gen. 28 (1995), 6373-6387,
hep-th/9506007.
- Cieslinski J., An algebraic method to construct the Darboux matrix,
J. Math. Phys. 36 (1995), 5670-5706.
- Cieslinski J., Biernacki W., A new approach to the
Darboux-Bäcklund transformation versus the standard dressing method,
J. Phys. A: Math. Gen. 38 (2005), 9491-9501,
nlin.SI/0506016.
- Darboux G., Leçons sur la théorie générale des surfaces et les
applications géométriques du calcul infinitésimal.
Vol. IV. Deformation infiniment petite et représentation sphérique,
Gauthier-Villars, Paris, 1896.
- Darboux G., Sur une proposition relative aux équations linéaires,
C. R. Acad. Sci. Paris 94 (1882), 1456-1459.
- Doktorov E.V., Leble S.B., A dressing method in mathematical physics,
Mathematical Physics Studies, Vol. 28, Springer, Dordrecht, 2007.
- Dunajski M., An interpolating dispersionless integrable system,
J. Phys. A: Math. Theor. 41 (2008), 315202, 9 pages,
arXiv:0804.1234.
- Gel'fand I., Gel'fand S., Retakh V., Wilson R.L., Quasideterminants,
Adv. Math. 193 (2005), 56-141, math.QA/0208146.
- Gel'fand I., Retakh V., Determinants of matrices over noncommutative rings,
Funct. Anal. Appl. 25 (1991), 91-102.
- Gel'fand I., Retakh V., Theory of noncommutative determinants, and
characteristic functions of graphs, Funct. Anal. Appl. 26
(1992), 231-246.
- Gel'fand I., Retakh V., Wilson R.L., Quaternionic quasideterminants and
determinants, in Lie Groups and Symmetric Spaces, Amer. Math. Soc.
Transl. Ser. 2, Vol. 210, Amer. Math. Soc., Providence, RI, 2003, 111-123,
math.QA/0206211.
- Haider B., Hassan M., Quasideterminant solutions of an integrable chiral model
in two dimensions, J. Phys. A: Math. Theor. 42 (2009),
355211, 18 pages, arXiv:0912.3071.
- Haider B., Hassan M., The U(N) chiral model and exact multi-solitons,
J. Phys. A: Math. Theor. 41 (2008), 255202, 17 pages,
arXiv:0912.1984.
- Haider B., Hassan M., Saleem U., Binary Darboux transformation and
quasideterminant solutions of the chiral field, J. Nonlinear Math.
Phys., to appear.
- Hassan M., Darboux transformation of the generalized coupled dispersionless
integrable system, J. Phys. A: Math. Theor. 42 (2009),
065203, 11 pages, arXiv:0912.1671.
- Hirota R., Tsujimoto S., Note on "New coupled integrable dispersionless
equations", J. Phys. Soc. Japan 63 (1994), 3533.
- Ji Q., Darboux transformation for MZM-I, II equations, Phys.
Lett. A 311 (2003), 384-388.
- Kakuhata H., Konno K., A generalization of coupled integrable, dispersionless
system, J. Phys. Soc. Japan 65 (1996), 340-341.
- Kakuhata H., Konno K., Canonical formulation of a generalized coupled
dispersionless system, J. Phys. A: Math. Gen. 30 (1997),
L401-L407.
- Kakuhata H., Konno K., Lagrangian, Hamiltonian and conserved quantities for
coupled integrable, dispersionless equations, J. Phys. Soc. Japan
65 (1996), 1-2.
- Kodama Y., A method for solving the dispersionless KP equation and its exact
solutions, Phys. Lett. A 129 (1988), 223-226.
- Kodama Y., Pierce V.U., Combinatorics of dispersionless integrable systems and
universality in random matrix theory, Comm. Math. Phys. 292
(2009), 529-568, arXiv:0811.0351.
- Konno K., Oono H., New coupled integrable dispersionless equations,
J. Phys. Soc. Japan 63 (1994), 377-378.
- Konopelchenko B.G., Magri F., Coisotropic deformations of associative algebras
and dispersionless integrable hierarchies, Comm. Math. Phys.
274 (2007), 627-658, nlin.SI/0606069.
- Kotlyarov V.P., On equations gauge equivalent to the sine-Gordon and
Pohlmeyer-Lund-Regge equations, J. Phys. Soc. Japan
63 (1994), 3535-3537.
- Krichever I.M., The dispersionless Lax equations and topological minimal
models, Comm. Math. Phys. 143 (1992), 415-429.
- Krob D., Leclerc B., Minor identities for quasi-determinants and quantum
determinants, Comm. Math. Phys. 169 (1995), 1-23,
hep-th/9411194.
- Leble S.B., Binary Darboux transformations and systems of N waves in
rings, Theoret. and Math. Phys. 122 (2000), 200-210.
- Leble S.B., Elementary and binary Darboux transformations at rings,
Comput. Math. Appl. 35 (1998), 73-81.
- Leble S.B., Ustinov N.V., Darboux transforms, deep reductions and solitons,
J. Phys. A: Math. Gen. 26 (1993), 5007-5016.
- Leble S.B., Ustinov N.V., Deep reductions for matrix Lax system, invariant forms
and elementary Darboux transforms, in Proceedings of NEEDS-92 Workshop, World
Scientific, Singapore, 1993, 34-41.
- Li C.X., Nimmo J.J.C., Quasideterminant solutions of a non-abelian Toda
lattice and kink solutions of a matrix sine-Gordon equation,
Proc. R. Soc. Lond. Ser. A 464 (2008), 951-966,
arXiv:0711.2594.
- Mañas M., Darboux transformations for the nonlinear Schrödinger
equations, J. Phys. A: Math. Gen. 29 (1996), 7721-7737.
- Matveev V.B., Darboux invariance and the solutions of Zakharov-Shabat equations, Preprint LPTHE 79-07, LPTHE, Orsay, 1979, 11 pages.
- Matveev V.B., Darboux transformation and explicit solutions of the
Kadomtcev-Petviaschvily equation, depending on functional parameters,
Lett. Math. Phys. 3 (1979), 213-216.
- Matveev V.B., Darboux transformation and the explicit solutions of
differential-difference and difference-difference evolution equations. I,
Lett. Math. Phys. 3 (1979), 217-222.
- Matveev V.B., Salle M.A., Differential-difference evolution equations.
II. Darboux transformation for the Toda lattice, Lett. Math.
Phys. 3 (1979), 425-429.
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series
in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
- Nimmo J.J.C., Darboux transformations for discrete systems, Chaos
Solitons Fractals 11 (2000), 115-120.
- Nimmo J.J.C., Darboux transformations from reductions of the KP hierarchy, in
Nonlinear Evolution Equations & Dynamical Systems: NEEDS '94 (Los
Alamos, NM), World Sci. Publ., River Edge, NJ, 1995, 168-177,
solv-int/9410001.
- Nimmo J.J.C., Gilson C.R., Ohta Y., Applications of Darboux transformations
to the self-dual Yang-Mills equations, Theoret. and Math. Phys.
122 (2000), 239-246.
- Oevel W., Schief W., Darboux theorems and the KP hierarchy, in Applications
of Analytic and Geometric Methods to Nonlinear Differential Equations
(Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 193-206.
- Park Q.H., Shin H.J., Darboux transformation and Crum's formula for
multi-component integrable equations, Phys. D 157 (2001),
1-15.
- Rogers C., Schief W.K., Bäcklund and Darboux transformations: geometry and
modern applications in soliton theory, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, 2002.
- Sakhnovich A.L., Dressing procedure for solutions of nonlinear equations and
the method of operator identities, Inverse Problems 10
(1994), 699-710.
- Takasaki K., Dispersionless Toda hierarchy and two-dimensional string theory,
Comm. Math. Phys. 170 (1995), 101-116,
hep-th/9403190.
- Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit,
Rev. Math. Phys. 7 (1995), 743-808,
hep-th/9405096.
- Ustinov N.V., The reduced self-dual Yang-Mills equation, binary and
infinitesimal Darboux transformations, J. Math. Phys. 39
(1998), 976-985.
- Wiegmann P.B., Zabrodin A., Conformal maps and integrable hierarchies,
Comm. Math. Phys. 213 (2000), 523-538,
hep-th/9909147.
|
|