|
SIGMA 8 (2012), 083, 9 pages arXiv:1206.3436
https://doi.org/10.3842/SIGMA.2012.083
'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
Metod Saniga a, Michel Planat b, Petr Pracna c and Péter Lévay d
a) Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
b) Institut FEMTO-ST, CNRS, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
c) J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech
Republic
d) Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Received June 22, 2012, in final form November 02, 2012; Published online November 06, 2012
Abstract
Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012),
405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 182−123 and 24142−4364 ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V22(37;0,12,15,10) and V4(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained.
Key words:
'magic' configurations of observables; three-qubit Pauli group; split Cayley hexagon of order two.
pdf (334 kb)
tex (71 kb)
References
- De Kaey J., Van Maldeghem H., A characterization of the split Cayley
generalized hexagon H(q) using one subhexagon of order (1,q),
Discrete Math. 294 (2005), 109-118.
- Frohardt D., Johnson P., Geometric hyperplanes in generalized hexagons of order
(2,2), Comm. Algebra 22 (1994), 773-797.
- Havlicek H., Odehnal B., Saniga M., Factor-group-generated polar spaces and
(multi-)qudits, SIGMA 5 (2009), 096, 15 pages,
arXiv:0903.5418.
- Kochen S., Specker E.P., The problem of hidden variables in quantum mechanics,
J. Math. Mech. 17 (1967), 59-87.
- Lévay P., Saniga M., Vrana P., Three-qubit operators, the split Cayley
hexagon of order two, and black holes, Phys. Rev. D 78
(2008), 124022, 16 pages, arXiv:0808.3849.
- Mermin N.D., Hidden variables and the two theorems of John Bell,
Rev. Modern Phys. 65 (1993), 803-815.
- Planat M., Pauli graphs when the Hilbert space dimension contains a square:
why the Dedekind psi function?, J. Phys. A: Math. Theor.
44 (2011), 045301, 16 pages, arXiv:1009.3858.
- Planat M., Saniga M., On the Pauli graphs on N-qudits, Quantum
Inf. Comput. 8 (2008), 127-146, quant-ph/0701211.
- Polster B., Schroth A.E., van Maldeghem H., Generalized flatland, Math.
Intelligencer 23 (2001), 33-47.
- Ronan M.A., Embeddings and hyperplanes of discrete geometries,
European J. Combin. 8 (1987), 179-185.
- Saniga M., Lévay P., Mermin's pentagram as an ovoid of PG(3,2),
Europhys. Lett. 97 (2012), 50006, 3 pages,
arXiv:1111.5923.
- Saniga M., Planat M., Finite geometry behind the Harvey-Chryssanthacopoulos
four-qubit magic rectangle, Quantum Inf. Comput. 11 (2012),
1011-1016, arXiv:1204.6229.
- Saniga M., Planat M., Multiple qubits as symplectic polar spaces of order two,
Adv. Stud. Theor. Phys. 1 (2007), 1-4,
quant-ph/0612179.
- Saniga M., Planat M., Prachna P., Projective curves over a ring that includes
two-qubits, Theoret. and Math. Phys. 155 (2008), 905-913,
quant-ph/0611063.
- Saniga M., Planat M., Pracna P., Havlicek H., The Veldkamp space of
two-qubits, SIGMA 3 (2007), 075, 7 pages,
arXiv:0704.0495.
- Schroth A.E., How to draw a hexagon, Discrete Math. 199
(1999), 161-171.
- Thas K., The geometry of generalized Pauli operators of N-qudit Hilbert
space, and an application to MUBs, Europhys. Lett. 86
(2009), 60005, 3 pages.
- Vrana P., Lévay P., The Veldkamp space of multiple qubits,
J. Phys. A: Math. Theor. 43 (2010), 125303, 16 pages,
arXiv:0906.3655.
- Waegell M., Aravind P.K., Proofs of the Kochen-Specker theorem based on a
system of three qubits, J. Phys. A: Math. Theor. 45 (2012),
405301, 13 pages, arXiv:1205.5015.
|
|