|
SIGMA 8 (2012), 080, 19 pages arXiv:1208.6165
https://doi.org/10.3842/SIGMA.2012.080
Novel Enlarged Shape Invariance Property and Exactly Solvable Rational Extensions of the Rosen-Morse II and Eckart Potentials
Christiane Quesne
Physique Nucléaire Théorique et Physique Mathématique, Université Libre de
Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
Received August 30, 2012, in final form October 15, 2012; Published online October 26, 2012
Abstract
The existence of a novel enlarged shape invariance property valid for some rational extensions of shape-invariant conventional potentials, first pointed out in the case of the Morse potential, is confirmed by deriving all rational extensions of the Rosen-Morse II and Eckart potentials that can be obtained in first-order supersymmetric quantum mechanics. Such extensions are shown to belong to three different types, the first two strictly isospectral to some starting conventional potential with different parameters and the third with an extra bound state below the spectrum of the latter. In the isospectral cases, the partner of the rational extensions resulting from the deletion of their ground state can be obtained by translating both the potential parameter A (as in the conventional case) and the degree m of the polynomial arising in the denominator. It therefore belongs to the same family of extensions, which turns out to be closed.
Key words:
quantum mechanics; supersymmetry; shape invariance.
pdf (385 kb)
tex (24 kb)
References
- Adler V.É., On a modification of Crum's method, Theoret. and
Math. Phys. 101 (1994), 1381-1386.
- Andrianov A.A., Ioffe M.V., Nishnianidze D.N., Polynomial SUSY in quantum
mechanics and second derivative Darboux transformations, Phys.
Lett. A 201 (1995), 103-110, hep-th/9404120.
- Aoyama H., Sato M., Tanaka T., N-fold supersymmetry in quantum
mechanics: general formalism, Nuclear Phys. B 619 (2001),
105-127, quant-ph/0106037.
- Bagchi B., Quesne C., Roychoudhury R., Isospectrality of conventional and new
extended potentials, second-order supersymmetry and role of PT
symmetry, Pramana J. Phys. 73 (2009), 337-347,
arXiv:0812.1488.
- Bagrov V.G., Samsonov B.F., Darboux transformation, factorization, and
supersymmetry in one-dimensional quantum mechanics, Theoret. and
Math. Phys. 104 (1995), 1051-1060.
- Berger M.S., Ussembayev N.S., Isospectral potentials from modified
factorization, Phys. Rev. A 82 (2010), 022121, 7 pages,
arXiv:1008.1528.
- Bougie J., Gangopadhyaya A., Mallow J.V., Generation of a complete set of
additive shape-invariant potentials from an Euler equation, Phys.
Rev. Lett. 105 (2010), 210402, 4 pages, arXiv:1008.2035.
- Bougie J., Gangopadhyaya A., Mallow J.V., Method for generating additive
shape-invariant potentials from an Euler equation, J. Phys. A:
Math. Theor. 44 (2011), 275307, 19 pages, arXiv:1103.1169.
- Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., A quantum exactly
solvable nonlinear oscillator related to the isotonic oscillator,
J. Phys. A: Math. Theor. 41 (2008), 085301, 10 pages,
arXiv:0711.4899.
- Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics,
Phys. Rep. 251 (1995), 267-385, hep-th/9405029.
- Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math.
Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
- Dutta D., Roy P., Conditionally exactly solvable potentials and exceptional
orthogonal polynomials, J. Math. Phys. 51 (2010), 042101,
9 pages.
- Dutta D., Roy P., Generalized factorization and isospectral potentials,
Phys. Rev. A 83 (2011), 054102, 4 pages.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental
functions, Mc-Graw Hill, New York, 1953.
- Fellows J.M., Smith R.A., Factorization solution of a family of quantum
nonlinear oscillators, J. Phys. A: Math. Theor. 42 (2009),
335303, 13 pages.
- Fernández C. D.J., Fernández-García N., Higher-order
supersymmetric quantum mechanics, AIP Conf. Proc. 744
(2005), 236-273, quant-ph/0502098.
- Gómez-Ullate D., Kamran N., Milson R., A conjecture on exceptional
orthogonal polynomials, arXiv:1203.6857.
- Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal
polynomials defined by a Sturm-Liouville problem, J. Math. Anal.
Appl. 359 (2009), 352-367, arXiv:0807.3939.
- Gómez-Ullate D., Kamran N., Milson R., An extension of Bochner's problem:
exceptional invariant subspaces, J. Approx. Theory 162
(2010), 987-1006, arXiv:0805.3376.
- Gómez-Ullate D., Kamran N., Milson R., Exceptional orthogonal polynomials
and the Darboux transformation, J. Phys. A: Math. Theor.
43 (2010), 434016, 16 pages, arXiv:1002.2666.
- Gómez-Ullate D., Kamran N., Milson R., On orthogonal polynomials spanning a
non-standard flag, in Algebraic Aspects of Darboux Transformations, Quantum
Integrable Systems and Supersymmetric Quantum Mechanics, Contemp.
Math., Vol. 563, Amer. Math. Soc., Providence, RI, 2012, 51-72,
arXiv:1101.5584.
- Gómez-Ullate D., Kamran N., Milson R., Supersymmetry and algebraic
Darboux transformations, J. Phys. A: Math. Gen. 37
(2004), 10065-10078, nlin.SI/0402052.
- Gómez-Ullate D., Kamran N., Milson R., The Darboux transformation and
algebraic deformations of shape-invariant potentials, J. Phys. A:
Math. Gen. 37 (2004), 1789-1804, quant-ph/0308062.
- Gómez-Ullate D., Kamran N., Milson R., Two-step Darboux transformations
and exceptional Laguerre polynomials, J. Math. Anal. Appl.
387 (2012), 410-418, arXiv:1103.5724.
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products,
Academic Press, New York, 1980.
- Grandati Y., Multistep DBT and regular rational extensions of the isotonic
oscillator,
Ann. Physics 327 (2012), 2411-2431,
arXiv:1108.4503.
- Grandati Y., New rational extensions of solvable potentials with finite bound
state spectrum, arXiv:1203.4149.
- Grandati Y., Solvable rational extensions of the isotonic oscillator,
Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.
- Grandati Y., Solvable rational extensions of the Morse and
Kepler-Coulomb potentials, J. Math. Phys. 52 (2011),
103505, 12 pages, arXiv:1103.5023.
- Ho C.-L., Prepotential approach to solvable rational extensions of harmonic
oscillator and Morse potentials, J. Math. Phys. 52
(2011), 122107, 8 pages, arXiv:1105.3670.
- Ho C.-L., Prepotential approach to solvable rational potentials and exceptional
orthogonal polynomials, Progr. Theoret. Phys. 126 (2011),
185-201, arXiv:1104.3511.
- Ho C.-L., Odake S., Sasaki R., Properties of the exceptional (Xl)
Laguerre and Jacobi polynomials, SIGMA 7 (2011), 107,
24 pages, arXiv:0912.5447.
- Krein M.G., On a continual analogue of a Christoffel formula from the theory
of orthogonal polynomials, Dokl. Acad. Nauk SSSR 113
(1957), 970-973.
- Odake S., Sasaki R., Another set of infinitely many exceptional (Xl)
Laguerre polynomials, Phys. Lett. B 684 (2010), 173-176,
arXiv:0911.3442.
- Odake S., Sasaki R., Exactly solvable quantum mechanics and infinite families
of multi-indexed orthogonal polynomials, Phys. Lett. B 702
(2011), 164-170, arXiv:1105.0508.
- Odake S., Sasaki R., Infinitely many shape-invariant potentials and cubic
identities of the Laguerre and Jacobi polynomials, J. Math.
Phys. 51 (2010), 053513, 9 pages, arXiv:0911.1585.
- Odake S., Sasaki R., Infinitely many shape invariant potentials and new
orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417,
arXiv:0906.0142.
- Quesne C., Exceptional orthogonal polynomials and new exactly solvable
potentials in quantum mechanics, J. Phys. Conf. Ser. 380
(2012), 012016, 13 pages, arXiv:1111.6467.
- Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and
supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001,
6 pages, arXiv:0807.4087.
- Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional
orthogonal polynomials, Modern Phys. Lett. A 26 (2011),
1843-1852, arXiv:1106.1990.
- Quesne C., Rationally-extended radial oscillators and Laguerre exceptional
orthogonal polynomials in kth-order SUSYQM, Internat. J. Modern
Phys. A 26 (2011), 5337-5347, arXiv:1110.3958.
- Quesne C., Revisiting (quasi)-exactly solvable rational extensions of the Morse
potential, Internat. J. Modern Phys. A 27 (2012), 1250073,
18 pages, arXiv:1203.1812.
- Quesne C., Solvable rational potentials and exceptional orthogonal polynomials
in supersymmetric quantum mechanics, SIGMA 5 (2009), 084,
24 pages, arXiv:0906.2331.
- Ramos A., On the new translational shape-invariant potentials,
J. Phys. A: Math. Theor. 44 (2011), 342001, 9 pages,
arXiv:1106.3732.
- Sasaki R., Takemura K., Global solutions of certain second order differential
equations with a high degree of apparent singularity, arXiv:1207.5302.
- Sasaki R., Tsujimoto S., Zhedanov A., Exceptional Laguerre and Jacobi
polynomials and the corresponding potentials through Darboux-Crum
transformations, J. Phys. A: Math. Theor. 43 (2010),
315204, 20 pages, arXiv:1004.4711.
- Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems,
J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
- Szegö G., Orthogonal polynomials, Amer. Math. Soc., Providence, RI, 1939.
|
|