|
SIGMA 8 (2012), 079, 13 pages arXiv:1207.5368
https://doi.org/10.3842/SIGMA.2012.079
Rational Calogero-Moser Model: Explicit Form and r-Matrix of the Second Poisson Structure
Jean Avan a and Eric Ragoucy b
a) Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise (CNRS UMR 8089), Saint-Martin 2,
2, av. Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
b) LAPTH Annecy le Vieux, CNRS and Université de Savoie, 9 chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France
Received July 24, 2012, in final form October 17, 2012; Published online October 26, 2012
Abstract
We compute the full expression of the second Poisson bracket structure for N=2 and N=3 site
rational classical Calogero-Moser model. We propose an r-matrix formulation for N=2. It is
identified with the classical limit of the second dynamical boundary algebra previously built by
the authors.
Key words:
classical integrable systems; hierarchy of Poisson structures; dynamical reflection equation.
pdf (372 kb)
tex (22 kb)
References
- Aniceto I., Avan J., Jevicki A., Poisson structures of Calogero-Moser and
Ruijsenaars-Schneider models, J. Phys. A: Math. Gen.
43 (2010), 185201, 14 pages, arXiv:0912.3468.
- Arutyunov G.E., Chekhov L.O., Frolov S.A., R-matrix quantization of the
elliptic Ruijsenaars-Schneider model, Comm. Math. Phys.
192 (1998), 405-432, q-alg/9612032.
- Arutyunov G.E., Frolov S.A., Quantum dynamical R-matrices and quantum
Frobenius group, Comm. Math. Phys. 191 (1998), 15-29,
q-alg/9610009.
- Avan J., Babelon O., Talon M., Construction of the classical R-matrices for
the Toda and Calogero models, St. Petersburg Math. J. 6
(1994), 255-274, hep-th/9606102.
- Avan J., Billaud B., Rollet G., Classification of non-affine non-Hecke
dynamical R-matrices, SIGMA 8 (2012), 064, 45 pages,
arXiv:1204.2746.
- Avan J., Ragoucy E., A new dynamical reflection algebra and related quantum
integrable systems, Lett. Math. Phys. 101 (2012), 85-101,
arXiv:1106.3264.
- Avan J., Talon M., Classical R-matrix structure for the Calogero model,
Phys. Lett. B 303 (1993), 33-37, hep-th/9210128.
- Babelon O., Bernard D., Talon M., Introduction to classical integrable systems,
Cambridge Monographs on Mathematical Physics, Cambridge University Press,
Cambridge, 2003.
- Babelon O., Viallet C.M., Hamiltonian structures and Lax equations,
Phys. Lett. B 237 (1990), 411-416.
- Balog J., D abrowski L., Fehér L., Classical r-matrix and exchange
algebra in WZNW and Toda theories, Phys. Lett. B 244
(1990), 227-234.
- Bartocci C., Falqui G., Mencattini I., Ortenzi G., Pedroni M., On the geometric
origin of the bi-Hamiltonian structure of the Calogero-Moser system,
Int. Math. Res. Not. 2010 (2010), no. 2, 279-296,
arXiv:0902.0953.
- Braden H.W., Suzuki T., R-matrices for elliptic Calogero-Moser models,
Lett. Math. Phys. 30 (1994), 147-158,
hep-th/9312031.
- Calogero F., Exactly solvable one-dimensional many-body problems, Lett.
Nuovo Cimento 13 (1975), 411-416.
- Calogero F., On a functional equation connected with integrable many-body
problems, Lett. Nuovo Cimento 16 (1976), 77-80.
- Fehér L., Pusztai B.G., A class of Calogero type reductions of free
motion on a simple Lie group, Lett. Math. Phys. 79
(2007), 263-277, math-ph/0609085.
- Felder G., Elliptic quantum groups, in XIth International Congress of
Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995,
211-218, hep-th/9412207.
- Freidel L., Maillet J.M., Quadratic algebras and integrable systems,
Phys. Lett. B 262 (1991), 278-284.
- Gervais J.L., Neveu A., Novel triangle relation and absence of tachyons in
Liouville string field theory, Nuclear Phys. B 238
(1984), 125-141.
- Lax P.D., Integrals of nonlinear equations of evolution and solitary waves,
Comm. Pure Appl. Math. 21 (1968), 467-490.
- Li L.C., Parmentier S., Nonlinear Poisson structures and r-matrices,
Comm. Math. Phys. 125 (1989), 545-563.
- Magri F., Casati P., Falqui G., Pedroni M., Eight lectures on integrable
systems, in Integrability of Nonlinear Systems (Pondicherry, 1996),
Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 256-296.
- Maillet J.M., New integrable canonical structures in two-dimensional models,
Nuclear Phys. B 269 (1986), 54-76.
- Moser J., Three integrable Hamiltonian systems connected with isospectral
deformations, Adv. Math. 16 (1975), 197-220.
- Nagy Z., Avan J., Rollet G., Construction of dynamical quadratic algebras,
Lett. Math. Phys. 67 (2004), 1-11,
math.QA/0307026.
- Oevel W., Ragnisco O., R-matrices and higher Poisson brackets for
integrable systems, Phys. A 161 (1989), 181-220.
- Olshanetsky M.A., Perelomov A.M., Classical integrable finite-dimensional
systems related to Lie algebras, Phys. Rep. 71 (1981),
313-400.
- Pusztai B.G., On the r-matrix structure of the hyperbolic BCn model,
arXiv:1205.1029.
- Ruijsenaars S.N.M., Schneider H., A new class of integrable systems and its
relation to solitons, Ann. Physics 170 (1986), 370-405.
- Semenov-Tjan-Shanskii M.A., What is a classical r-matrix?, Funct.
Anal. Appl. 17 (1983), 259-272.
- Sklyanin E.K., Some algebraic structures connected with the Yang-Baxter
equation, Funct. Anal. Appl. 16 (1982), 263-270.
- Suris Yu.B., Why is the Ruijsenaars-Schneider hierarchy governed by the
same R-operator as the Calogero-Moser one?, Phys. Lett. A
225 (1997), 253-262, hep-th/9602160.
- Xu P., Quantum dynamical Yang-Baxter equation over a nonabelian base,
Comm. Math. Phys. 226 (2002), 475-495,
math.QA/0104071.
|
|