|
SIGMA 8 (2012), 075, 7 pages arXiv:1210.5318
https://doi.org/10.3842/SIGMA.2012.075
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications”
Sylvester versus Gundelfinger
Andries E. Brouwer a and Mihaela Popoviciu b
a) Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b) Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
Received July 18, 2012, in final form October 12, 2012; Published online October 19, 2012
Abstract
Let $V_n$ be the ${\rm SL}_2$-module of binary forms of degree $n$
and let $V = V_1 \oplus V_3 \oplus V_4$.
We show that the minimum number of generators of the algebra
$R = \mathbb{C}[V]^{{\rm SL}_2}$ of polynomial functions
on $V$ invariant under the action of ${\rm SL}_2$
equals 63. This settles a 143-year old question.
Key words:
invariants; covariants; binary forms.
pdf (379 kb)
tex (88 kb)
References
- Brion M., Invariants de plusieurs formes binaires, Bull. Soc. Math.
France 110 (1982), 429-445.
- Cayley A., A second memoir upon quantics, Phil. Trans. Royal Soc.
London 146 (1856), 101-126.
- Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of
Mathematical Sciences, Vol. 130, Springer-Verlag, Berlin, 2002.
- Gordan P., Beweis, dass jede Covariante und Invariante einer binären Form
eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl
solcher Formen ist, J. Reine Angew. Math. 69 (1868),
323-354.
- Gordan P., Die simultanen Systeme binärer Formen, Math. Ann.
2 (1870), 227-280.
- Gundelfinger S., Zur Theorie des simultanen Systems einer cubischen und einer
biquadratischen binären Form, Habilitationsschrift, J.B. Metzler,
Stuttgart, 1869.
- Hammond J., Note on an exceptional case in which the fundamental
postulate of professor Sylvester's theory of tamisage fails,
Proc. London Math. Soc. 14 (1882), 85-88.
- Hilbert D., Ueber die vollen Invariantensysteme, Math. Ann.
42 (1893), 313-373.
- Hochster M., Roberts J.L., Rings of invariants of reductive groups acting on
regular rings are Cohen-Macaulay, Adv. Math. 13
(1974), 115-175.
- Morley R.K., On the fundamental postulate of tamisage, Amer. J.
Math. 34 (1912), 47-68.
- Olver P.J., Classical invariant theory, London Mathematical Society
Student Texts, Vol. 44, Cambridge University Press, Cambridge, 1999.
- Procesi C., Lie groups. An approach through invariants and representations,
Universitext, Springer, New York, 2007.
- Springer T.A., Invariant theory, Lecture Notes in Mathematics, Vol.
585, Springer-Verlag, Berlin, 1977.
- Springer T.A., On the invariant theory of SU2, Indag.
Math. 42 (1980), 339-345.
- Sylvester J.J., Détermination du nombre exact des covariants irréductibles
du système cubo-biquadratique binaire, C. R. Acad. Sci. Paris
87 (1878), 477-481.
- Sylvester J.J., Proof of the hitherto undemonstrated fundamental theorem of
invariants, Phil. Mag. 5 (1879), 178-188.
- Sylvester J.J., Sur le vrai nombre des covariants élémentaires d'un
système de deux formes biquadratiques binaires, C. R. Acad. Sci.
Paris 84 (1877), 1285-1289.
- Sylvester J.J., Sur le vrai nombre des formes irréductibles du système
cubo-biquadratique, C. R. Acad. Sci. Paris 87 (1878),
445-448.
- Sylvester J.J., Sur les covariants fundamentaux d'un système cubo-quartique
binaire, C. R. Acad. Sci. Paris 87 (1878), 287-289.
- Sylvester J.J., Franklin F., Tables of the generating functions and
groundforms for the binary quantics of the first ten orders,
Amer. J. Math. 2 (1879), 223-251.
|
|