|
SIGMA 8 (2012), 069, 10 pages arXiv:1208.1782
https://doi.org/10.3842/SIGMA.2012.069
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”
Complex SUSY Transformations and the Painlevé IV Equation
David Bermúdez
Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
Received July 29, 2012, in final form September 28, 2012; Published online October 11, 2012
Abstract
In this paper we will explicitly work out the complex first-order SUSY transformation for the harmonic oscillator in order to obtain both real and complex new exactly-solvable potentials. Furthermore, we will show that this systems lead us to exact complex solutions of the Painlevé IV equation with complex parameters. We present some concrete examples of such solutions.
Key words:
supersymmetric quantum mechanics; Painlevé equations; differential equations; quantum harmonic oscillator; polynomial Heisenberg algebras.
pdf (508 kb)
tex (190 kb)
References
- Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and
inverse scattering, London Mathematical Society Lecture Note Series,
Vol. 149, Cambridge University Press, Cambridge, 1991.
- Adler V.È., Nonlinear chains and Painlevé equations, Phys. D
73 (1994), 335-351.
- Andrianov A., Cannata F., Ioffe M., Nishnianidze D., Systems with higher-order
shape invariance: spectral and algebraic properties, Phys. Lett. A
266 (2000), 341-349,
quant-ph/9902057.
- Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., SUSY quantum mechanics
with complex superpotentials and real energy spectra, Internat. J.
Modern Phys. A 14 (1999), 2675-2688,
quant-ph/9806019.
- Aref'eva I., Fernandez D.J., Hussin V., Negro J., Nieto L.M., Samsonov B.F. (Editors),
Progress in Supersymmetric Quantum Mechanics (PSQM'03)
(Valladolid, Spain, July 15-19, 2003), J. Phys. A: Math. Gen.
37 (2004).
- Bagrov V.G., Samsonov B.F., Darboux transformation, factorization and
supersymmetry in one-dimensional quantum mechanics, Theoret. and
Math. Phys. 104 (1995), 1051-1060.
- Bagrov V.G., Samsonov B.F., Darboux transformation of the Schrödinger
equation, Phys. Particles Nuclei 28 (1997), 374-397.
- Bassom A.P., Clarkson P.A., Hicks A.C., Bäcklund transformations and solution
hierarchies for the fourth Painlevé equation, Stud. Appl. Math.
95 (1995), 1-71.
- Bermúdez D., Fernández C D., Supersymmetric quantum mechanics and
Painlevé IV equation, SIGMA 7 (2011), 025,
14 pages, arXiv:1012.0290.
- Bermúdez D., Fernández C D., Complex solutions to the Painlevé IV
equation through supersymmetric quantum mechanics, AIP Conf. Proc.
1420 (2012), 47-51, arXiv:1110.0555.
- Bermúdez D., Fernández C. D.J., Non-Hermitian Hamiltonians and the
Painlevé IV equation with real parameters, Phys. Lett. A
375 (2011), 2974-2978, arXiv:1104.3599.
- Boiti M., Pempinelli F., Nonlinear Schrödinger equation, Bäcklund
transformations and Painlevé transcendents, Nuovo Cimento B
59 (1980), 40-58.
- Carballo J., Fernández C D., Negro J., Nieto L., Polynomial Heisenberg
algebras, J. Phys. A: Math. Gen. 37 (2004), 10349-10362.
- Clarkson P.A., Kruskal M.D., New similarity reductions of the Boussinesq
equation, J. Math. Phys. 30 (1989), 2201-2213.
- Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008.
- Dubov S.Y., Eleonski V.M., Kulagin N.E., Equidistant spectra of
anharmonic oscillators, Chaos 4 (1994), 47-53.
- Fernández C. D.J., New hydrogen-like potentials, Lett. Math. Phys.
8 (1984), 337-343.
- Fernández C. D.J., Hussin V., Higher-order SUSY, linearized nonlinear
Heisenberg algebras and coherent states, J. Phys. A: Math. Gen.
32 (1999), 3603-3619.
- Fernández C. D.J., Muñoz R., Ramos A., Second order SUSY
transformations with "complex energies", Phys. Lett. A
308 (2003), 11-16, quant-ph/0212026.
- Fernández C. D.J., Negro J., Nieto L., Elementary systems with partial
finite ladder spectra, Phys. Lett. A 324 (2004), 139-144.
- Florjanczyk M., Gagnon L., Exact solutions for a higher-order nonlinear
Schrödinger equation, Phys. Rev. A 41 (1990),
4478-4485.
- Fokas A.S., Its A.R., Kitaev A.V., Discrete Painlevé equations and their
appearance in quantum gravity, Comm. Math. Phys. 142
(1991), 313-344.
- Gravel S., Hamiltonians separable in Cartesian coordinates and third-order
integrals of motion, J. Math. Phys. 45 (2004), 1003-1019,
math-ph/0302028.
- Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the
complex plane, de Gruyter Studies in Mathematics, Vol. 28, Walter de
Gruyter & Co., Berlin, 2002.
- Infeld L., Hull T.E., The factorization method, Rev. Modern Phys.
23 (1951), 21-68.
- Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé.
A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
- Junker G., Roy P., Conditionally exactly solvable potentials: a supersymmetric
construction method, Ann. Physics 270 (1998), 155-177,
quant-ph/9803024.
- Marquette I., Superintegrability with third order integrals of motion, cubic
algebras, and supersymmetric quantum mechanics. II. Painlevé
transcendent potentials, J. Math. Phys. 50 (2009), 095202,
18 pages, arXiv:0811.1568.
- Mateo J., Negro J., Third-order differential ladder operators and
supersymmetric quantum mechanics, J. Phys. A: Math. Theor.
41 (2008), 045204, 28 pages.
- Mielnik B., Factorization method and new potentials with the oscillator
spectrum, J. Math. Phys. 25 (1984), 3387-3389.
- Nieto M.M., Relationship between supersymmetry and the inverse method in
quantum mechanics, Phys. Lett. B 145 (1984), 208-210.
- Paquin G., Winternitz P., Group theoretical analysis of dispersive long wave
equations in two space dimensions, Phys. D 46 (1990),
122-138.
- Rosas-Ortiz O., Muñoz R., Non-Hermitian SUSY hydrogen-like
Hamiltonians with real spectra, J. Phys. A: Math. Gen. 36
(2003), 8497-8506, quant-ph/0302190.
- Samsonov B.F., Ovcharov I.N., The Darboux transformation and nonclassical
orthogonal polynomials, Russian Phys. J. 38 (1995),
378-384.
- Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems,
J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
- Veselov A.P., Shabat A.B., A dressing chain and the spectral theory of the
Schrödinger operator, Funct. Anal. Appl. 27 (1993),
81-96.
- Wess J., Bagger J., Supersymmetry and supergravity, 2nd ed., Princeton Series
in Physics, Princeton University Press, Princeton, NJ, 1992.
- Winternitz P., Physical applications of Painlevé type equations quadratic
in the highest derivatives, in Painlevé Transcendents (Sainte-Adèle,
PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, Plenum,
New York, 1992, 425-431.
- Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B
188 (1981), 513-554.
|
|