|
SIGMA 8 (2012), 068, 28 pages arXiv:1209.1134
https://doi.org/10.3842/SIGMA.2012.068
Contribution to the Special Issue “Mirror Symmetry and Related Topics”
Recent Developments in (0,2) Mirror Symmetry
Ilarion Melnikov a, Savdeep Sethi b and Eric Sharpe c
a) Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Golm, Germany
b) Department of Physics, Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA
c) Department of Physics, MC 0435, 910 Drillfield Dr., Virginia Tech, Blacksburg, VA 24061, USA
Received June 04, 2012, in final form October 02, 2012; Published online October 07, 2012
Abstract
Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.
Key words:
mirror symmetry; (0,2) mirror symmetry; quantum sheaf cohomology.
pdf (555 kb)
tex (43 kb)
References
- Adams A., Basu A., Sethi S., (0,2) duality, Adv. Theor. Math. Phys.
7 (2003), 865-950, hep-th/0309226.
- Adams A., Distler J., Ernebjerg M., Topological heterotic rings, Adv.
Theor. Math. Phys. 10 (2006), 657-682, hep-th/0506263.
- Aspinwall P.S., Greene B.R., Morrison D.R., The monomial-divisor mirror map,
Int. Math. Res. Not. 1993 (1993), no. 12, 319-337,
alg-geom/9309007.
- Aspinwall P.S., Morrison D.R., Topological field theory and rational curves,
Comm. Math. Phys. 151 (1993), 245-262,
hep-th/9110048.
- Aspinwall P.S., Plesser M.R., Elusive worldsheet instantons in heterotic string
compactifications, arXiv:1106.2998.
- Basu A., Sethi S., World-sheet stability of (0,2) linear sigma models,
Phys. Rev. D 68 (2003), 025003, 8 pages,
hep-th/0303066.
- Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties, J. Algebraic Geom. 3
(1994), 493-535, alg-geom/9310003.
- Batyrev V.V., Quantum cohomology rings of toric manifolds,
Astérisque (1993), no. 218, 9-34, alg-geom/9310004.
- Batyrev V.V., Materov E.N., Toric residues and mirror symmetry, Mosc.
Math. J. 2 (2002), 435-475, math.AG/0203216.
- Beasley C., Witten E., Residues and world-sheet instantons, J. High
Energy Phys. 2003 (2003), no. 10, 065, 39 pages,
hep-th/0304115.
- Blumenhagen R., Flohr M., Aspects of (0,2) orbifolds and mirror symmetry,
Phys. Lett. B 404 (1997), 41-48, hep-th/9702199.
- Blumenhagen R., Schimmrigk R., Wißkirchen A., (0,2) mirror symmetry,
Nuclear Phys. B 486 (1997), 598-628,
hep-th/9609167.
- Blumenhagen R., Sethi S., On orbifolds of (0,2) models, Nuclear
Phys. B 491 (1997), 263-278, hep-th/9611172.
- Borisov L.A., Higher-Stanley-Reisner rings and toric residues,
Compos. Math. 141 (2005), 161-174,
math.AG/0306307.
- Borisov L.A., Kaufmann R.M., On CY-LG correspondence for (0,2) toric models,
arXiv:1102.5444.
- Candelas P., de la Ossa X.C., Green P.S., Parkes L., An exactly soluble
superconformal theory from a mirror pair of Calabi-Yau manifolds,
Phys. Lett. B 258 (1991), 118-126.
- Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Mathematical
Surveys and Monographs, Vol. 68, American Mathematical Society, Providence,
RI, 1999.
- Dijkgraaf R., Verlinde H., Verlinde E., Notes on topological string theory and
2D quantum gravity, in String Theory and Quantum Gravity (Trieste,
1990), World Sci. Publ., River Edge, NJ, 1991, 91-156.
- Donagi R., Guffin J., Katz S., Sharpe E., A mathematical theory of quantum
sheaf cohomology, arXiv:1110.3751.
- Donagi R., Guffin J., Katz S., Sharpe E., Physical aspects of quantum sheaf
cohomology for deformations of tangent bundles of toric varieties,
arXiv:1110.3752.
- Giveon A., Porrati M., Rabinovici E., Target space duality in string theory,
Phys. Rep. 244 (1994), 77-202, hep-th/9401139.
- Greene B.R., Plesser M.R., Duality in Calabi-Yau moduli space,
Nuclear Phys. B 338 (1990), 15-37.
- Guffin J., Quantum sheaf cohomology, a précis, arXiv:1101.1305.
- Guffin J., Katz S., Deformed quantum cohomology and (0,2) mirror symmetry,
J. High Energy Phys. 2010 (2010), no. 8, 109, 27 pages,
arXiv:0710.2354.
- Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R.,
Zaslow E., Mirror symmetry, Clay Mathematics Monographs, Vol. 1,
Amer. Math. Soc., Providence, RI, 2003.
- Hori K., Vafa C., Mirror symmetry, hep-th/0002222.
- Kapranov M.M., A characterization of A-discriminantal hypersurfaces in
terms of the logarithmic Gauss map, Math. Ann. 290
(1991), 277-285.
- Karu K., Toric residue mirror conjecture for Calabi-Yau complete
intersections, J. Algebraic Geom. 14 (2005), 741-760,
math.AG/0311338.
- Katz S., Sharpe E., Notes on certain (0,2) correlation functions, Comm.
Math. Phys. 262 (2006), 611-644, hep-th/0406226.
- Kontsevich M., Homological algebra of mirror symmetry, in Proceedings of the
International Congress of Mathematicians, Vol. 1, 2 (Zürich,
1994), Birkhäuser, Basel, 1995, 120-139, alg-geom/9411018.
- Kreuzer M., McOrist J., Melnikov I.V., Plesser M.R., (0,2) deformations of
linear sigma models, J. High Energy Phys. 2011 (2011),
no. 7, 044, 30 pages, arXiv:1001.2104.
- Kreuzer M., Skarke H., Complete classification of reflexive polyhedra in four
dimensions, Adv. Theor. Math. Phys. 4 (2000), 1209-1230,
hep-th/0002240.
- McOrist J., The revival of (0,2) sigma models, Internat. J. Modern
Phys. A 26 (2011), 1-41, arXiv:1010.4667.
- McOrist J., Melnikov I.V., Half-twisted correlators from the Coulomb branch,
J. High Energy Phys. 2008 (2008), no. 4, 071, 19 pages,
arXiv:0712.3272.
- McOrist J., Melnikov I.V., Old issues and linear sigma models,
arXiv:1103.1322.
- McOrist J., Melnikov I.V., Summing the instantons in half-twisted linear sigma
models, J. High Energy Phys. (2009), no. 2, 026, 61 pages,
arXiv:0810.0012.
- Melnikov I.V., (0,2) Landau-Ginzburg models and residues, J. High
Energy Phys. 2009 (2009), no. 9, 118, 25 pages, arXiv:0902.3908.
- Melnikov I.V., Plesser M.R., A (0,2) mirror map, J. High Energy Phys.
2011 (2011), no. 2, 001, 15 pages, arXiv:1003.1303.
- Melnikov I.V., Sethi S., Half-twisted (0,2) Landau-Ginzburg models,
J. High Energy Phys. 2008 (2008), no. 3, 040, 21 pages,
arXiv:0712.1058.
- Morrison D.R., Plesser M.R., Summing the instantons: quantum cohomology and
mirror symmetry in toric varieties, Nuclear Phys. B 440
(1995), 279-354, hep-th/9412236.
- Morrison D.R., Plesser M.R., Towards mirror symmetry as duality for
two-dimensional abelian gauge theories, in Strings '95 (Los Angeles,
CA, 1995), World Sci. Publ., River Edge, NJ, 1996, 374-387,
hep-th/9508107.
- Periwal V., Strominger A., Kähler geometry of the space of N=2
superconformal field theories, Phys. Lett. B 235 (1990),
261-267.
- Sharpe E., Notes on certain other (0,2) correlation functions, Adv.
Theor. Math. Phys. 13 (2009), 33-70, hep-th/0605005.
- Sharpe E., Notes on correlation functions in (0,2) theories, in Snowbird
Lectures on String Geometry, Contemp. Math., Vol. 401, Amer. Math.
Soc., Providence, RI, 2006, 93-104, hep-th/0502064.
- Silverstein E., Witten E., Criteria for conformal invariance of (0,2) models,
Nuclear Phys. B 444 (1995), 161-190,
hep-th/9503212.
- Strominger A., Yau S.T., Zaslow E., Mirror symmetry is T-duality,
Nuclear Phys. B 479 (1996), 243-259,
hep-th/9505162.
- Szenes A., Vergne M., Toric reduction and a conjecture of Batyrev and
Materov, Invent. Math. 158 (2004), 453-495,
math.AT/0306311.
- Tan M.C., Two-dimensional twisted sigma models and the theory of chiral
differential operators, Adv. Theor. Math. Phys. 10 (2006),
759-851, hep-th/0604179.
- Tan M.C., Two-dimensional twisted sigma models, the mirror chiral de Rham
complex, and twisted generalised mirror symmetry, J. High Energy
Phys. 2007 (2007), no. 7, 013, 80 pages, arXiv:0705.0790.
- Tan M.C., Yagi J., Chiral algebras of (0,2) sigma models: beyond perturbation theory, Lett. Math. Phys. 84 (2008), 257-273, arXiv:0801.4782.
- Witten E., Mirror manifolds and topological field theory, in Essays on Mirror
Manifolds, Int. Press, Hong Kong, 1992, 120-158, hep-th/9112056.
- Witten E., Phases of N=2 theories in two dimensions, Nuclear
Phys. B 403 (1993), 159-222, hep-th/9301042.
- Yagi J., Chiral algebras of (0,2) models,
arXiv:1001.0118.
|
|