|
SIGMA 8 (2012), 065, 20 pages arXiv:1206.6004
https://doi.org/10.3842/SIGMA.2012.065
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics”
Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Harry W. Braden and Timothy P. Northover
School of Mathematics, Edinburgh University, Edinburgh, Scotland, UK
Received June 10, 2012, in final form September 27, 2012; Published online October 02, 2012
Abstract
Bring's curve is the genus 4 Riemann surface with automorphism group
of maximal size, S5. Riera and Rodríguez have provided the most detailed study
of the curve thus far via a hyperbolic model. We will recover and extend their results via
an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan.
In particular we recover their period matrix; further,
the vector of Riemann constants will be identified.
Key words:
Bring's curve; vector of Riemann constants.
pdf (526 kb)
tex (64 kb)
References
- Berndt B.C., Ramanujan's notebooks. Part III, Springer-Verlag, New York,
1991.
- Braden H.W., Northover T.P., Klein's curve, J. Phys. A: Math. Theor.
43 (2010), 434009, 17 pages, arXiv:0905.4202.
- Breuer T., Characters and automorphism groups of compact Riemann surfaces,
London Mathematical Society Lecture Note Series, Vol. 280, Cambridge
University Press, Cambridge, 2000.
- Bujalance E., Etayo J.J., Gamboa J.M., Gromadzki G., Automorphism groups of
compact bordered Klein surfaces. A combinatorial approach, Lecture
Notes in Mathematics, Vol. 1439, Springer-Verlag, Berlin, 1990.
- Craig M., A sextic Diophantine equation, Austral. Math. Soc. Gaz.
29 (2002), 27-29.
- Craig M., On Klein's quartic curve, Austral. Math. Soc. Gaz.
31 (2004), 115-120.
- Deconinck B., van Hoeij M., Computing Riemann matrices of algebraic curves,
Phys. D 152/153 (2001), 28-46.
- Dye R.H., A plane sextic curve of genus 4 with A5 for collineation
group, J. London Math. Soc. 52 (1995), 97-110.
- Edge W.L., Bring's curve, J. London Math. Soc. 18 (1978),
539-545.
- Edge W.L., Tritangent planes of Bring's curve, J. London Math. Soc.
23 (1981), 215-222.
- Farkas H.M., Kra I., Riemann surfaces, Graduate Texts in Mathematics,
Vol. 71, Springer-Verlag, New York, 1980.
- Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in
Mathematics, Vol. 352, Springer-Verlag, Berlin, 1973.
- Hulek K., Geometry of the Horrocks-Mumford bundle, in Algebraic Geometry,
Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure
Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 69-85.
- Kallel S., Sjerve D., Invariant spin structures on Riemann surfaces,
Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 457-477,
math.GT/0610568.
- Northover T.P., Riemann surfaces with symmetry: algorithms and applications,
Ph.D. thesis, Edinburgh University, 2011.
- Rauch H.E., Lewittes J., The Riemann surface of Klein with 168
automorphisms, in Problems in Analysis (Papers Dedicated to Salomon
Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 1970, 297-308.
- Riera G., Rodríguez R.E., The period matrix of Bring's curve,
Pacific J. Math. 154 (1992), 179-200.
- Vinnikov V., Selfadjoint determinantal representations of real plane curves,
Math. Ann. 296 (1993), 453-479.
- Weber M., Kepler's small stellated dodecahedron as a Riemann surface,
Pacific J. Math. 220 (2005), 167-182.
|
|