|
SIGMA 8 (2012), 063, 14 pages arXiv:1209.4151
https://doi.org/10.3842/SIGMA.2012.063
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”
Singular Isotonic Oscillator, Supersymmetry and Superintegrability
Ian Marquette
School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
Received July 20, 2012, in final form September 14, 2012; Published online September 19, 2012
Abstract
In the case of a one-dimensional nonsingular Hamiltonian H and a singular supersymmetric partner Ha, the Darboux and factorization relations of supersymmetric quantum mechanics can be only formal relations. It was shown how we can construct an adequate partner by using infinite barriers placed where are located the singularities on the real axis and recover isospectrality. This method was applied to superpartners of the harmonic oscillator with one singularity. In this paper, we apply this method to the singular isotonic oscillator with two singularities on the real axis. We also applied these results to four 2D superintegrable systems with second and third-order integrals of motion obtained by Gravel for which polynomial algebras approach does not allow to obtain the energy spectrum of square integrable wavefunctions. We obtain solutions involving parabolic cylinder functions.
Key words:
supersymmetric quantum mechanics; superintegrability; isotonic oscillator; polynomial algebra; special functions.
pdf (552 kb)
tex (179 kb)
References
- Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas,
graphs, and mathematical tables, Dover Publications, New York, 1972.
- Agboola D., Zhang Y.Z., Unified derivation of exact solutions for a class of
quasi-exactly solvable models, J. Math. Phys. 53 (2012),
042101, 13 pages, arXiv:1111.1050.
- Andrianov A., Cannata F., Ioffe M., Nishnianidze D., Systems with higher-order
shape invariance: spectral and algebraic properties, Phys. Lett. A
266 (2000), 341-349, quant-ph/9902057.
- Berger M.S., Ussembayev N.S., Isospectral potentials from modified
factorization, Phys. Rev. A 82 (2010), 022121, 7 pages,
arXiv:1008.1528.
- Berger M.S., Ussembayev N.S., Second-order supersymmetric operators and excited
states, J. Phys. A: Math. Theor. 43 (2010), 385309,
10 pages, arXiv:1007.5116.
- Bermúdez D., Fernández C. D.J., Non-Hermitian Hamiltonians and the
Painlevé IV equation with real parameters, Phys. Lett. A
375 (2011), 2974-2978, arXiv:1104.3599.
- Bermúdez D., Fernández C. D.J., Supersymmetric quantum mechanics and
Painlevé IV equation, SIGMA 7 (2011), 025, 14 pages,
arXiv:1012.0290.
- Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., A quantum
exactly solvable nonlinear oscillator related to the isotonic oscillator,
J. Phys. A: Math. Theor. 41 (2008), 085301, 10 pages.
- Casahorran J., Esteve J.G., Supersymmetric quantum mechanics, anomalies and
factorization, J. Phys. A: Math. Gen. 25 (1992),
L347-L352.
- Das A., Pernice S.A., Supersymmetry and singular potentials, Nuclear
Phys. B 561 (1999), 357-384, hep-th/9905135.
- Dean P., The constrained quantum mechanical harmonic oscillator, Proc.
Cambridge Philos. Soc. 62 (1966), 277-286.
- Demircioglu B., Kuru S., Önder M., Verçin A., Two
families of superintegrable and isospectral potentials in two dimensions,
J. Math. Phys. 43 (2002), 2133-2150,
quant-ph/0201099.
- Fellows J.M., Smith R.A., Factorization solution of a family of quantum
nonlinear oscillators, J. Phys. A: Math. Theor. 42 (2009),
335303, 13 pages.
- Fernandez F.M., Simple one-dimensional quantum-mechanical model for a particle
attached to a surface, Eur. J. Phys. 31 (2010), 961–-967,
arXiv:1003.5014.
- Frank W.M., Land D.J., Spector R.M., Singular potentials, Rev. Modern
Phys. 43 (1971), 36-98.
- Gendenshtein L., Derivation of exact spectra of the Schrödinger equation by
means of supersymmetry, JETP Lett. 38 (1983), 356-359.
- Grandati Y., Solvable rational extensions of the isotonic oscillator,
Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.
- Gravel S., Hamiltonians separable in Cartesian coordinates and third-order
integrals of motion, J. Math. Phys. 45 (2004), 1003-1019,
math-ph/0302028.
- Hall R.L., Saad N., Yesiltas Ö., Generalized quantum isotonic
nonlinear oscillator in d dimensions, J. Phys. A: Math. Theor.
43 (2010), 465304, 8 pages, arXiv:1010.0620.
- Ince E.L., Ordinary differential equations, Dover Publications, New York,
1944.
- Jevicki A., Rodrigues J.P., Singular potentials and supersymmetry breaking,
Phys. Lett. B 146 (1984), 55-58.
- Junker G., Supersymmetric methods in quantum and statistical physics, Texts and
Monographs in Physics, Springer-Verlag, Berlin, 1996.
- Kraenkel R.A., Senthilvelan M., On the solutions of the position-dependent
effective mass Schrödinger equation of a nonlinear oscillator related
with the isotonic oscillator, J. Phys. A: Math. Theor. 42
(2009), 415303, 10 pages.
- Lathouwers L., The Hamiltonian H=(−1/2)d2/dx2+x2/2+λ/x2 reobserved, J. Math. Phys. 16 (1975), 1393-1395.
- Marquette I., An infinite family of superintegrable systems from higher order
ladder operators and supersymmetry, J. Phys. Conf. Ser. 284
(2011), 012047, 8 pages, arXiv:1008.3073.
- Marquette I., Superintegrability and higher order polynomial algebras,
J. Phys. A: Math. Theor. 43 (2010), 135203, 15 pages,
arXiv:0908.4399.
- Marquette I., Superintegrability with third order integrals of motion, cubic
algebras, and supersymmetric quantum mechanics. I. Rational function
potentials, J. Math. Phys. 50 (2009), 012101, 23 pages,
arXiv:0807.2858.
- Marquette I., Superintegrability with third order integrals of motion, cubic
algebras, and supersymmetric quantum mechanics. II. Painlevé
transcendent potentials, J. Math. Phys. 50 (2009), 095202,
18 pages, arXiv:0811.1568.
- Marquette I., Supersymmetry as a method of obtaining new superintegrable
systems with higher order integrals of motion, J. Math. Phys.
50 (2009), 122102, 10 pages, arXiv:0908.1246.
- Marquette I., Winternitz P., Superintegrable systems with third-order integrals
of motion, J. Phys. A: Math. Theor. 41 (2008), 304031,
10 pages, arXiv:0711.4783.
- Márquez I.F., Negro J., Nieto L.M., Factorization method and singular
Hamiltonians, J. Phys. A: Math. Gen. 31 (1998),
4115-4125.
- Mei W.N., Lee Y.C., Harmonic oscillator with potential barriers - exact
solutions and perturbative treatments, J. Phys. A: Math. Gen.
16 (1983), 1623-1632.
- Mielnik B., Factorization method and new potentials with the oscillator
spectrum, J. Math. Phys. 25 (1984), 3387-3389.
- Post S., Tsujimoto S., Vinet L., Families of superintegrable Hamiltonians
constructed from exceptional polynomials, J. Phys. A: Math. Theor.,
to appear, arXiv:1206.0480.
- Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional
orthogonal polynomials, Modern Phys. Lett. A 26 (2011),
1843-1852, arXiv:1106.1990.
- Robnik M., Supersymmetric quantum mechanics based on higher excited states,
J. Phys. A: Math. Gen. 30 (1997), 1287-1294,
chao-dyn/9611008.
- Samsonov B.F., Ovcharov I.N., The Darboux transformation and exactly solvable
potentials with a quasi-equidistant spectrum, Russian Phys. J.
38 (1995), 765-771.
- Sesma J., The generalized quantum isotonic oscillator, J. Phys. A:
Math. Theor. 43 (2010), 185303, 14 pages.
- Slavyanov S.Yu., Confluent Heun equation, in Heun's Differential Equations, The
Clarendon Press, Oxford University Press, New York, 1995, 87-127.
- Slavyanov S.Yu., Lay W., Special functions. A unified theory based on
singularities, Oxford Mathematical Monographs, Oxford University Press,
Oxford, 2000.
- Spiridonov V., Universal superpositions of coherent states and self-similar
potentials, Phys. Rev. A 52 (1995), 1909-1935,
quant-ph/9601030.
- Tkachuk V.M., Supersymmetric method for constructing quasi-exactly and
conditionally-exactly solvable potentials, J. Phys. A: Math. Gen.
32 (1999), 1291-1300, quant-ph/9808050.
- Veselov A.P., On Stieltjes relations, Painlevé-IV hierarchy and complex
monodromy, J. Phys. A: Math. Gen. 34 (2001), 3511-3519,
math-ph/0012040.
- Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996.
- Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B
188 (1981), 513-554.
- Znojil M., Comment on "Supersymmetry and singular potentias"
[Nuclear Phys. B 561 (1999), 357-384], Nuclear
Phys. B 662 (2003), 554-562, hep-th/0209262.
- Znojil M., PT-symmetric harmonic oscillators, Phys.
Lett. A 259 (1999), 220-223, quant-ph/9905020.
|
|