|
SIGMA 8 (2012), 061, 19 pages arXiv:1205.0821
https://doi.org/10.3842/SIGMA.2012.061
Spectral Analysis of Certain Schrödinger Operators
Mourad E.H. Ismail a and Erik Koelink b
a) Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
b) Radboud Universiteit, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
Received May 07, 2012, in final form September 12, 2012; Published online September 15, 2012
Abstract
The J-matrix method is extended to difference and q-difference operators and is applied to
several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The
spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction
expansion is written down explicitly
in most cases. In some cases we encounter new orthogonal polynomials with explicit three term
recurrence relations where nothing is known about their explicit representations or
orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the
sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages].
Key words:
J-matrix method; discrete quantum mechanics; diagonalization;
tridiagonalization; Laguere polynomials; Meixner polynomials; ultraspherical polynomials;
continuous dual Hahn polynomials; ultraspherical (Gegenbauer) polynomials; Al-Salam-Chihara
polynomials; birth and death process polynomials; shape invariance; zeros.
pdf (450 kb)
tex (27 kb)
References
- Akhiezer N.I., The classical moment problem and some related questions in
analysis, Hafner Publishing Co., New York, 1965.
- Alhaidari A.D., An extended class of L2-series solutions of the wave
equation, Ann. Physics 317 (2005), 152-174,
quant-ph/0409002.
- Alhaidari A.D., Exact L2 series solution of the Dirac-Coulomb problem
for all energies, Ann. Physics 312 (2004), 144-160,
hep-th/0405023.
- Alhaidari A.D., Group-theoretical foundation of the J-matrix theory of
scattering, J. Phys. A: Math. Gen. 33 (2000), 6721-6738.
- Alhaidari A.D., L2 series solution of the relativistic Dirac-Morse
problem for all energies, Phys. Lett. A 326 (2004), 58-69,
math-ph/0405008.
- Alhaidari A.D., Bahlouli H., Extending the class of solvable potentials.
I. The infinite potential well with a sinusoidal bottom, J. Math.
Phys. 49 (2008), 082102, 13 pages.
- Alhaidari A.D., Bahlouli H., Abdelmonem M.S., Al-Ameen F., Al-Abdulaal T.,
Regularization in the J-matrix method of scattering revisited,
Phys. Lett. A 364 (2007), 372-377.
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of
Mathematics and its Applications, Vol. 71, Cambridge University Press,
Cambridge, 1999.
- Askey R., Continuous q-Hermite polynomials when q>1, in q-Series
and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl.,
Vol. 18, Springer, New York, 1989, 151-158.
- Bastard G., Wave mechanics applied to semiconductor heterostructures,
Wiley-Interscience, 1991.
- Berezans'ki J.M., Expansions in eigenfunctions of selfadjoint operators,
Translations of Mathematical Monographs, Vol. 17, American
Mathematical Society, Providence, R.I., 1968.
- Brown B.M., Evans W.D., Ismail M.E.H., The Askey-Wilson polynomials and
q-Sturm-Liouville problems, Math. Proc. Cambridge Philos.
Soc. 119 (1996), 1-16, math.CA/9408209.
- Christiansen J.S., Koelink E., Self-adjoint difference operators and symmetric
Al-Salam-Chihara polynomials, Constr. Approx. 28
(2008), 199-218, math.CA/0610534.
- Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert
approach, Courant Lecture Notes in Mathematics, Vol. 3, New York
University Courant Institute of Mathematical Sciences, New York, 1999.
- Edmunds D.E., Evans W.D., Spectral theory and differential operators, Oxford
Mathematical Monographs, Oxford Science Publications, The Clarendon Press,
Oxford University Press, New York, 1987.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher
transcendental functions, Vol. 1, McGraw-Hill, 1953.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
Press, Cambridge, 2004.
- Goh S.S., Micchelli C.A., Uncertainty principles in Hilbert spaces,
J. Fourier Anal. Appl. 8 (2002), 335-373.
- Heller E.J., Theory of J-matrix Green's functions with applications to atomic
polarizability and phase-shift error bounds, Phys. Rev. A
12 (1975), 1222-1231.
- Heller E.J., Reinhardt W.P., Yamani H.A., On an "equivalent quadrature"
calculation of matrix elements of (z−P2/2m) using an L2 expansion
technique, J. Comp. Phys. 13 (1973), 536-549.
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge
University Press, Cambridge, 2009.
- Ismail M.E.H., Ladder operators for q−1-Hermite polynomials,
C.R. Math. Rep. Acad. Sci. Canada 15 (1993), 261-266.
- Ismail M.E.H., Koelink E., Spectral properties of operators using
tridiagonalization, Anal. Appl. 10 (2012), 327-343,
arXiv:1108.5716.
- Ismail M.E.H., Koelink E., The J-matrix method, Adv. in Appl.
Math. 46 (2011), 379-395, arXiv:0810.4558.
- Ismail M.E.H., Letessier J., Masson D., Valent G., Birth and death processes
and orthogonal polynomials, in Orthogonal Polynomials: Theory and Practice
(Columbus, OH, 1989), NATO Advanced Science Institutes Series C:
Mathematical and Physical Sciences, Vol. 294, Editor P. Nevai, Kluwer Acad.
Publ., Dordrecht, 1990, 225-229.
- Ismail M.E.H., Li X., Bound on the extreme zeros of orthogonal polynomials,
Proc. Amer. Math. Soc. 115 (1992), 131-140.
- Ismail M.E.H., Masson D.R., q-Hermite polynomials, biorthogonal rational
functions, and q-beta integrals, Trans. Amer. Math. Soc.
346 (1994), 63-116.
- Karlin S., Tavaré S., Linear birth and death processes with killing,
J. Appl. Probab. 19 (1982), 477-487.
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal
polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998,
http://aw.twi.tudelft.nl/~koekoek/askey/.
- Koelink E., Spectral theory and special functions, in Laredo Lectures on
Orthogonal Polynomials and Special Functions, Adv. Theory Spec.
Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 45-84,
math.CA/0107036.
- Koelink H.T., Van der Jeugt J., Convolutions for orthogonal polynomials from
Lie and quantum algebra representations, SIAM J. Math. Anal.
29 (1998), 794-822, q-alg/9607010.
- Landau L.D., Lifshitz L.M., Course of theoretical physics, Vol. 3, Quantum
mechanics: nonrelativistic theory, 3rd ed., Butterworth-Heinemann, 1991.
- Masson D.R., Repka J., Spectral theory of Jacobi matrices in l2(Z)
and the su(1,1) Lie algebra, SIAM J. Math. Anal.
22 (1991), 1131-1146.
- Miller Jr. W., Lie theory and special functions, Mathematics in Science
and Engineering, Vol. 43, Academic Press, New York, 1968.
- Odake S., Sasaki R., Discrete quantum mechanics, J. Phys. A: Math.
Theor. 44 (2011), 353001, 47 pages, arXiv:1104.0473.
- Ojha P.C., SO(2,1) Lie algebra, the Jacobi matrix and the
scattering states of the Morse oscillator, J. Phys. A: Math. Gen.
21 (1988), 875-883.
- Rainville E.D., Special functions, The Macmillan Co., New York, 1960.
- Simon B., The classical moment problem as a self-adjoint finite difference
operator, Adv. Math. 137 (1998), 82-203,
math-ph/9906008.
- Szegö G., Orthogonal polynomials, American Mathematical Society,
Colloquium Publications, Vol. 23, 4th ed., American Mathematical Society,
Providence, R.I., 1975.
- Yamani H.A., Reinhardt W.P., L2 discretizations of the continuum: radial
kinetic energy, Phys. Rev. A 11 (1975), 1144-1156.
|
|