|
SIGMA 8 (2012), 059, 17 pages arXiv:1203.1716
https://doi.org/10.3842/SIGMA.2012.059
Formal Integrability for the Nonautonomous Case of the Inverse Problem of the Calculus of Variations
Oana Constantinescu
Faculty of Mathematics, Alexandru Ioan Cuza University, Bd. Carol no. 11, 700506, Iasi, Romania
Received March 16, 2012, in final form September 03, 2012; Published online September 06, 2012
Abstract
We address the integrability conditions of the inverse problem of
the calculus of variations for time-dependent SODE using the Spencer
version of the Cartan-Kähler theorem. We consider a linear partial
differential operator P given by the two Helmholtz conditions expressed
in terms of semi-basic 1-forms and study its formal integrability.
We prove that P is involutive and there is only one obstruction
for the formal integrability of this operator. The obstruction is
expressed in terms of the curvature tensor R of the induced nonlinear
connection. We recover some of the classes of Lagrangian semisprays:
flat semisprays, isotropic semisprays and arbitrary semisprays on
2-dimensional manifolds.
Key words:
formal integrability; partial differential operators; Lagrangian semisprays; Helmholtz conditions.
pdf (453 kb)
tex (94 kb)
References
- Aldridge J.E., Prince G.E., Sarlet W., Thompson G., An EDS approach to the
inverse problem in the calculus of variations, J. Math. Phys.
47 (2006), 103508, 22 pages.
- Anderson I., Thompson G., The inverse problem of the calculus of variations for
ordinary differential equations, Mem. Amer. Math. Soc. 98
(1992), no. 473, 110 pages.
- Antonelli P.L., Bucataru I., Volterra-Hamilton production models with
discounting: general theory and worked examples, Nonlinear Anal. Real
World Appl. 2 (2001), 337-356.
- Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A.,
Exterior differential systems, Mathematical Sciences Research
Institute Publications, Vol. 18, Springer-Verlag, New York, 1991.
- Bucataru I., Constantinescu O., Helmholtz conditions and symmetries for the
time dependent case of the inverse problem of the calculus of variations,
J. Geom. Phys. 60 (2010), 1710-1725, arXiv:0908.1631.
- Bucataru I., Dahl M.F., Semi-basic 1-forms and Helmholtz conditions for the
inverse problem of the calculus of variations, J. Geom. Mech.
1 (2009), 159-180, arXiv:0903.1169.
- Bucataru I., Muzsnay Z., Projective metrizability and formal integrability,
SIGMA 7 (2011), 114, 22 pages, arXiv:1105.2142.
- Cantrijn F., Cariñena J.F., Crampin M., Ibort L.A., Reduction of degenerate
Lagrangian systems, J. Geom. Phys. 3 (1986), 353-400.
- Cantrijn F., Sarlet W., Vandecasteele A., Martínez E., Complete
separability of time-dependent second-order ordinary differential equations,
Acta Appl. Math. 42 (1996), 309-334.
- Cariñena J.F., Gràcia X., Marmo G., Martínez E.,
Muñoz-Lecanda M.C., Román-Roy N., Geometric Hamilton-Jacobi
theory, Int. J. Geom. Methods Mod. Phys. 3 (2006),
1417-1458, math-ph/0604063.
- Cariñena J.F., Martínez E., Symmetry theory and Lagrangian inverse
problem for time-dependent second-order differential equations,
J. Phys. A: Math. Gen. 22 (1989), 2659-2665.
- Cartan É., Les systèmes différentiels extérieurs et leurs
applications géométriques, Actualités Sci. Ind., no. 994, Hermann et
Cie., Paris, 1945.
- Crampin M., On the differential geometry of the Euler-Lagrange equations,
and the inverse problem of Lagrangian dynamics, J. Phys. A: Math.
Gen. 14 (1981), 2567-2575.
- Crampin M., Prince G.E., Sarlet W., Thompson G., The inverse problem of the
calculus of variations: separable systems, Acta Appl. Math.
57 (1999), 239-254.
- Crampin M., Prince G.E., Thompson G., A geometrical version of the Helmholtz
conditions in time-dependent Lagrangian dynamics, J. Phys. A: Math.
Gen. 17 (1984), 1437-1447.
- Crampin M., Sarlet W., Martínez E., Byrnes G.B., Prince G.E., Towards a
geometrical understanding of Douglas' solution of the inverse problem of
the calculus of variations, Inverse Problems 10 (1994),
245-260.
- Darboux G., Leçons sur la théorie générale des surfaces et les
applications géométriques du calcul infinitésimal, Gauthier-Villars,
Paris, 1894.
- Davis D.R., The inverse problem of the calculus of variations in a space of
(n+1) dimensions, Bull. Amer. Math. Soc. 35 (1929),
371-380.
- de Leon M., Rodrigues P.R., Dynamical connections and non-autonomous
Lagrangian systems, Ann. Fac. Sci. Toulouse Math. (5) 9
(1988), 171-181.
- Douglas J., Solution of the inverse problem of the calculus of variations,
Trans. Amer. Math. Soc. 50 (1941), 71-128.
- Frölicher A., Nijenhuis A., Theory of vector-valued differential forms.
I. Derivations of the graded ring of differential forms, Nederl.
Akad. Wetensch. Proc. Ser. A 59 (1956), 338-359.
- Goldschmidt H., Integrability criteria for systems of nonlinear partial
differential equations, J. Differential Geometry 1 (1967),
269-307.
- Grifone J., Muzsnay Z., Variational principles for second-order differential
equations. Application of the Spencer theory to characterize variational
sprays, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
- Klein J., Espaces variationnels et mécanique, Ann. Inst. Fourier
(Grenoble) 12 (1962), 1-124.
- Kolár I., Michor P.W., Slovák J., Natural operations in
differential geometry, Springer-Verlag, Berlin, 1993.
- Kosambi D., Systems of differential equations of the second order,
Q. J. Math. 6 (1935), 1-12.
- Krupková O., The geometry of ordinary variational equations,
Lecture Notes in Mathematics, Vol. 1678, Springer-Verlag, Berlin,
1997.
- Krupková O., Prince G.E., Second order ordinary differential equations in
jet bundles and the inverse problem of the calculus of variations, in
Handbook of Global Analysis, Elsevier Sci. B.V., Amsterdam, 2008, 837-904.
- Massa E., Pagani E., Jet bundle geometry, dynamical connections, and the
inverse problem of Lagrangian mechanics, Ann. Inst. H. Poincaré
Phys. Théor. 61 (1994), 17-62.
- Prástaro A., (Co)bordism groups in PDEs, Acta Appl. Math.
59 (1999), 111-201.
- Prástaro A., Geometry of PDE's. II. Variational PDE's and integral
bordism groups, J. Math. Anal. Appl. 321 (2006), 930-948.
- Riquier C., Les systèmes d'équations aux dérivées partielles,
Gauthier-Villars, Paris, 1910.
- Santilli R.M., Foundations of theoretical mechanics. I. The inverse problem
in Newtonian mechanics, Texts and Monographs in Physics, Springer-Verlag, New York - Heidelberg, 1978.
- Sarlet W., Symmetries, first integrals and the inverse problem of Lagrangian
mechanics, J. Phys. A: Math. Gen. 14 (1981), 2227-2238.
- Sarlet W., The Helmholtz conditions revisited. A new approach to the
inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen.
15 (1982), 1503-1517.
- Sarlet W., Crampin M., Martínez E., The integrability conditions in the
inverse problem of the calculus of variations for second-order ordinary
differential equations, Acta Appl. Math. 54 (1998),
233-273.
- Sarlet W., Thompson G., Prince G.E., The inverse problem of the calculus of
variations: the use of geometrical calculus in Douglas's analysis,
Trans. Amer. Math. Soc. 354 (2002), 2897-2919.
- Sarlet W., Vandecasteele A., Cantrijn F., Martínez E., Derivations of
forms along a map: the framework for time-dependent second-order equations,
Differential Geom. Appl. 5 (1995), 171-203.
- Saunders D.J., The geometry of jet bundles, London Mathematical Society
Lecture Note Series, Vol. 142, Cambridge University Press, Cambridge, 1989.
- Spencer D.C., Overdetermined systems of linear partial differential equations,
Bull. Amer. Math. Soc. 75 (1969), 179-239.
|
|