|
SIGMA 8 (2012), 054, 12 pages arXiv:1201.5429
https://doi.org/10.3842/SIGMA.2012.054
Discrete Integrable Equations over Finite Fields
Masataka Kanki a, Jun Mada b and Tetsuji Tokihiro a
a) Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
b) College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan
Received May 18, 2012, in final form August 15, 2012; Published online August 18, 2012
Abstract
Discrete integrable equations over finite fields are investigated.
The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself.
The main discussion concerns a generalized discrete KdV equation related to a Yang-Baxter map.
Explicit forms of soliton solutions and their periods over finite fields are obtained.
Relation to the singularity confinement method is also discussed.
Key words:
integrable system; discrete KdV equation; finite field; cellular automaton.
pdf (962 kb)
tex (3165 kb)
References
- Bialecki M., Doliwa A., Discrete Kadomtsev-Petviashvili and
Korteweg-de Vries equations over finite fields, Theoret. and
Math. Phys. 137 (2003), 1412-1418, nlin.SI/0302064.
- Bialecki M., Nimmo J.J.C., On pattern structures of the N-soliton
solution of the discrete KP equation over a finite field,
J. Phys. A: Math. Theor. 40 (2007), 949-959,
nlin.SI/0608041.
- Date E., Jinbo M., Miwa T., Method for generating discrete soliton
equation. II, J. Phys. Soc. Japan 51 (1982), 4125-4131.
- Doliwa A., Bialecki M., Klimczewski P., The Hirota equation over finite
fields: algebro-geometric approach and multisoliton solutions,
J. Phys. A: Math. Gen. 36 (2003), 4827-4839,
nlin.SI/0211043.
- Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the
Painlevé property?, Phys. Rev. Lett. 67 (1991),
1825-1828.
- Kakei S., Nimmo J.J.C., Willox R., Yang-Baxter maps and the discrete KP
hierarchy, Glasg. Math. J. 51 (2009), 107-119.
- Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices
and discrete analogues of the Painlevé II equation,
Phys. Lett. A 153 (1991), 337-344.
- Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation PVI,
Ann. Mat. Pura Appl. (4)
146 (1987), 337-381.
- Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation PV,
Japan. J. Math. (N.S.) 13 (1987), 47-76.
- Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV,
Math. Ann. 275 (1986), 221-255.
- Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé
equation PIII, Funkcial. Ekvac. 30 (1987),
305-332.
- Papageorgiou V.G., Tongas A.G., Veselov A.P., Yang-Baxter maps and
symmetries of integrable equations on quad-graphs, J. Math. Phys.
47 (2006), 083502, 16 pages, math.QA/0605206.
- Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé
equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
- Ramani A., Grammaticos B., Satsuma J., Integrability of multidimensional
discrete systems, Phys. Lett. A 169 (1992), 323-328.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Tamizhmani K.M., Private communication, 2012.
- Wolfram S., Statistical mechanics of cellular automata, Rev. Modern
Phys. 55 (1983), 601-644.
|
|