|
SIGMA 8 (2012), 042, 30 pages arXiv:1107.2423
https://doi.org/10.3842/SIGMA.2012.042
On the Orthogonality of q-Classical Polynomials of the Hahn Class
Renato Álvarez-Nodarse a, Rezan Sevinik Adıgüzel b and Hasan Taşeli b
a) IMUS & Departamento de Análisis Matemático, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla, Spain
b) Department of Mathematics, Middle East Technical University (METU), 06531, Ankara, Turkey
Received July 29, 2011, in final form July 02, 2012; Published online July 11, 2012
Abstract
The central idea behind this review article is to discuss in a unified sense
the orthogonality of all possible polynomial
solutions of the q-hypergeometric difference equation on a q-linear lattice
by means of a qualitative analysis of the q-Pearson equation.
To be more specific, a geometrical approach has been
used by taking into account every possible rational form of the polynomial
coefficients in the q-Pearson equation, together with various relative positions of
their zeros, to describe a desired q-weight function supported on a suitable set of points.
Therefore, our method differs from the standard ones which are based
on the Favard theorem, the three-term recurrence relation
and the difference equation of hypergeometric type.
Our approach enables us to extend the orthogonality
relations for some well-known q-polynomials of the Hahn class
to a larger set of their parameters.
Key words:
q-polynomials; orthogonal polynomials on q-linear lattices; q-Hahn class.
pdf (653 kb)
tex (168 kb)
References
- Álvarez-Nodarse R., On characterizations of classical polynomials,
J. Comput. Appl. Math. 196 (2006), 320-337.
- Álvarez-Nodarse R., Polinomios hipergeométricos clásicos y
q-polinomios, Monographs of the "García de Galdeano"
Mathematics Seminar, Vol. 26, Universidad de Zaragoza Seminario Matematico
"Garcia de Galdeano", Zaragoza, 2003.
- Álvarez-Nodarse R., Arvesú J., On the q-polynomials in the
exponential lattice x(s)=c1qs+c3, Integral Transform. Spec.
Funct. 8 (1999), 299-324.
- Álvarez-Nodarse R., Atakishiyev N.M., Costas-Santos R.S., Factorization of
the hypergeometric-type difference equation on non-uniform lattices:
dynamical algebra, J. Phys. A: Math. Gen. 38 (2005),
153-174, arXiv:1003.4853.
- Álvarez-Nodarse R., Medem J.C., q-classical polynomials and the
q-Askey and Nikiforov-Uvarov tableaus, J. Comput. Appl.
Math. 135 (2001), 197-223.
- Álvarez-Nodarse R., Sevinik Adgüzel R., Ta seli H., The
orthogonality of q-classical polynomials of the Hahn class: a geometrical
approach, arXiv:1107.2423.
- Andrews G.E., Askey R., Classical orthogonal polynomials, in Orthogonal
Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in
Math., Vol. 1171, Springer, Berlin, 1985, 36-62.
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of
Mathematics and its Applications, Vol. 71, Cambridge University Press,
Cambridge, 1999.
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
(1985), no. 319.
- Atakishiyev N.M., Klimyk A.U., Wolf K.B., A discrete quantum model of the
harmonic oscillator, J. Phys. A: Math. Theor. 41 (2008),
085201, 14 pages, arXiv:0711.3089.
- Atakishiyev N.M., Rahman M., Suslov S.K., On classical orthogonal polynomials,
Constr. Approx. 11 (1995), 181-226.
- Chihara T.S., An introduction to orthogonal polynomials, Mathematics
and its Applications, Vol. 13, Gordon and Breach Science Publishers, New
York, 1978.
- Dehesa J.S., Nikiforov A.F., The orthogonality properties of q-polynomials,
Integral Transform. Spec. Funct. 4 (1996), 343-354.
- Elaydi S., An introduction to difference equations, 3rd ed., Undergraduate
Texts in Mathematics, Springer, New York, 2005.
- Fine N.J., Basic hypergeometric series and applications, Mathematical
Surveys and Monographs, Vol. 27, American Mathematical Society, Providence,
RI, 1988.
- García A.G., Marcellán F., Salto L., A distributional study of
discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995), 147-162.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
Press, Cambridge, 2004.
- Grünbaum F.A., Discrete models of the harmonic oscillator and a discrete
analogue of Gauss' hypergeometric equation, Ramanujan J.
5 (2001), 263-270.
- Hahn W., Über Orthogonalpolynome, die q-Differenzengleichungen
genügen, Math. Nachr. 2 (1949), 4-34.
- Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York,
2002.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
and their q-analogues, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2010.
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal
polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998,
http://aw.twi.tudelft.nl/~koekoek/askey/.
- Koornwinder T.H., Compact quantum groups and q-special functions, in
Representations of Lie Groups and Quantum Groups (Trento, 1993),
Pitman Res. Notes Math. Ser., Vol. 311, Longman Sci. Tech., Harlow,
1994, 46-128.
- Koornwinder T.H., Orthogonal polynomials in connection with quantum groups, in
Orthogonal polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., Vol. 294, Kluwer Acad. Publ., Dordrecht, 1990,
257-292.
- Marcellán F., Medem J.C., q-classical orthogonal polynomials: a very
classical approach, Electron. Trans. Numer. Anal. 9 (1999),
112-127.
- Marcellán F., Petronilho J., On the solution of some distributional
differential equations: existence and characterizations of the classical
moment functionals, Integral Transform. Spec. Funct. 2
(1994), 185-218.
- Medem J.C., Álvarez-Nodarse R., Marcellán F., On the q-polynomials:
a distributional study, J. Comput. Appl. Math. 135 (2001),
157-196.
- Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal polynomials of a
discrete variable, Springer Series in Computational Physics, Springer-Verlag,
Berlin, 1991.
- Nikiforov A.F., Uvarov V.B., Classical orthogonal polynomials of a discrete
variable on nonuniform nets, Inst. Prikl. Mat. M.V. Keldysha Akad. Nauk SSSR,
Moscow, 1983, Preprint no. 17, 34 pages (in Russian).
- Nikiforov A.F., Uvarov V.B., Polynomial solutions of hypergeometric type
difference equations and their classification, Integral Transform.
Spec. Funct. 1 (1993), 223-249.
- Nikiforov A.F., Uvarov V.B., Special functions of mathematical physics:
a unified introduction with applications, Birkhäuser Verlag, Basel, 1988.
- Suslov S.K., On the theory of difference analogues of special functions of
hypergeometric type, Russ. Math. Surv. 44 (1989), 227-278.
- Vilenkin N.J., Klimyk A.U., Representation of Lie groups and special
functions. Vol. 3. Classical and quantum groups and special functions,
Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer
Academic Publishers Group, Dordrecht, 1992.
|
|