|
SIGMA 8 (2012), 040, 16 pages arXiv:1006.1752
https://doi.org/10.3842/SIGMA.2012.040
The Vertex Algebra $M(1)^+$ and Certain Affine Vertex Algebras of Level $-1$
Dražen Adamović and Ozren Perše
Faculty of Science, Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
Received March 09, 2012, in final form July 01, 2012; Published online July 08, 2012
Abstract
We give a coset realization of the vertex operator
algebra $M(1)^+$ with central charge $\ell$. We realize $M(1) ^+$
as a commutant of certain affine vertex algebras of level $-1$ in
the vertex algebra $L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0)
\otimes L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0)$. We show that
the simple vertex algebra $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$ can be
(conformally) embedded into $L_{A_{2 \ell -1} ^{(1)}} (-\Lambda_0)$
and find the corresponding decomposition. We also study certain
coset subalgebras inside $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$.
Key words:
vertex operator algebra; affine Kac-Moody algebra; coset vertex algebra; conformal embedding; $\mathcal{W}$-algebra.
pdf (458 kb)
tex (21 kb)
References
- Adamović D., A construction of some ideals in affine vertex algebras,
Int. J. Math. Math. Sci. (2003), 971-980,
math.QA/0103006.
- Adamović D., Some rational vertex algebras, Glas. Mat. Ser. III
29(49) (1994), 25-40, q-alg/9502015.
- Adamović D., Milas A., On the triplet vertex algebra ${\mathcal W}(p)$,
Adv. Math. 217 (2008), 2664-2699, arXiv:0707.1857.
- Adamović D., Milas A., The $N=1$ triplet vertex operator superalgebras,
Comm. Math. Phys. 288 (2009), 225-270, arXiv:0712.0379.
- Adamović D., Milas A., Vertex operator algebras associated to modular
invariant representations for $A^{(1)}_1$, Math. Res. Lett.
2 (1995), 563-575, q-alg/9509025.
- Adamović D., Perše O., Fusion rules and complete reducibility of
certain modules for affine Lie algebras, in preparation.
- Adamović D., Perše O., On coset vertex algebras with central charge 1, Math. Commun. 15 (2010), 143-157.
- Adamović D., Perše O., Representations of certain non-rational vertex
operator algebras of affine type, J. Algebra 319 (2008),
2434-2450, math.QA/0702018.
- Arakawa T., Representation theory of ${\mathcal W}$-algebras, Invent.
Math. 169 (2007), 219-320, math.QA/0506056.
- Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster,
Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
- Bourbaki N., Éléments de mathématique. Fasc. XXXVIII: Groupes et
algèbres de Lie, Actualités Scientifiques et Industrielles, Vol.
1364, Hermann, Paris, 1975.
- Dong C., Griess R.L., Rank one lattice type vertex operator algebras and their
automorphism groups, J. Algebra 208 (1998), 262-275,
q-alg/9710017.
- Dong C., Lam C.H., Yamada H., $\mathcal W$-algebras related to parafermion
algebras, J. Algebra 322 (2009), 2366-2403,
arXiv:0809.3630.
- Dong C., Mason G., On quantum Galois theory, Duke Math. J.
86 (1997), 305-321, hep-th/9412037.
- Dong C., Nagatomo K., Classification of irreducible modules for the vertex
operator algebra $M(1)^+$, J. Algebra 216 (1999),
384-404, math.QA/9806051.
- Dong C., Nagatomo K., Classification of irreducible modules for the vertex
operator algebra $M(1)^+$. II. Higher rank, J. Algebra
240 (2001), 289-325, math.QA/9905064.
- Feingold A.J., Frenkel I.B., Classical affine algebras, Adv. Math.
56 (1985), 117-172.
- Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves,
Mathematical Surveys and Monographs, Vol. 88, American Mathematical
Society, Providence, RI, 2001.
- Frenkel I.B., Huang Y.Z., Lepowsky J., On axiomatic approaches to vertex
operator algebras and modules, Mem. Amer. Math. Soc. 104
(1993), no. 494.
- Frenkel I.B., Lepowsky J., Meurman A., Vertex operator algebras and the
Monster, Pure and Applied Mathematics, Vol. 134, Academic Press
Inc., Boston, MA, 1988.
- Frenkel I.B., Zhu Y., Vertex operator algebras associated to representations of
affine and Virasoro algebras, Duke Math. J. 66 (1992),
123-168.
- Goddard P., Kent A., Olive D., Virasoro algebras and coset space models,
Phys. Lett. B 152 (1985), 88-92.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University
Press, Cambridge, 1990.
- Kac V.G., Vertex algebras for beginners, University Lecture Series,
Vol. 10, 2nd ed., American Mathematical Society, Providence, RI, 1998.
- Kac V.G., Wakimoto M., Modular invariant representations of
infinite-dimensional Lie algebras and superalgebras, Proc. Nat.
Acad. Sci. USA 85 (1988), 4956-4960.
- Kac V.G., Wakimoto M., On rationality of $W$-algebras, Transform.
Groups 13 (2008), 671-713, arXiv:0711.2296.
- Lepowsky J., Li H., Introduction to vertex operator algebras and their
representations, Progress in Mathematics, Vol. 227, Birkhäuser
Boston Inc., Boston, MA, 2004.
- Li H.S., Local systems of vertex operators, vertex superalgebras and modules,
J. Pure Appl. Algebra 109 (1996), 143-195,
hep-th/9406185.
- Meurman A., Primc M., Annihilating fields of standard modules of
${\mathfrak{sl}}(2,{\mathbb C})^\sim$ and combinatorial identities,
Mem. Amer. Math. Soc. 137 (1999), no. 652.
- Perše O., Vertex operator algebras associated to certain admissible
modules for affine Lie algebras of type $A$, Glas. Mat. Ser. III
43(63) (2008), 41-57, arXiv:0707.4129.
- Perše O., Vertex operator algebras associated to type $B$ affine Lie
algebras on admissible half-integer levels, J. Algebra 307
(2007), 215-248, math.QA/0512129.
|
|