|
SIGMA 8 (2012), 022, 20 pages arXiv:1102.4065
https://doi.org/10.3842/SIGMA.2012.022
Conformally Equivariant Quantization - a Complete Classification
Jean-Philippe Michel
University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Luxembourg
Received July 29, 2011, in final form April 11, 2012; Published online April 15, 2012
Abstract
Conformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight δ.
Later, Silhan has determined the critical values of δ for which unique existence is lost, and conjectured that for those values of δ existence is lost for a generic weight λ. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of δ and λ. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight δ, and (ii) in that case the conformally equivariant quantization exists only for a finite number of λ, corresponding to nontrivial conformally invariant differential operators on λ-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.
Key words:
quantization; (bi-)differential operators; conformal invariance; Lie algebra cohomology.
pdf (471 kb)
tex (30 kb)
References
- Beckmann R., Clerc J.L., Singular invariant trilinear forms and covariant
(bi-)differential operators under the conformal group, J. Funct.
Anal. 262 (2012), 4341-4376.
- Boe B.D., Collingwood D.H., A comparison theory for the structure of induced
representations, J. Algebra 94 (1985), 511-545.
- Boe B.D., Collingwood D.H., A comparison theory for the structure of induced
representations. II, Math. Z. 190 (1985), 1-11.
- Boniver F., Mathonet P., IFFT-equivariant quantizations, J. Geom.
Phys. 56 (2006), 712-730, math.RT/0109032.
- Boniver F., Mathonet P., Maximal subalgebras of vector fields for equivariant
quantizations, J. Math. Phys. 42 (2001), 582-589,
math.DG/0009239.
- Cap A., Silhan J., Equivariant quantizations for AHS-structures, Adv.
Math. 224 (2010), 1717-1734, arXiv:0904.3278.
- Duval C., Lecomte P., Ovsienko V., Conformally equivariant quantization:
existence and uniqueness, Ann. Inst. Fourier (Grenoble) 49
(1999), 1999-2029, math.DG/9902032.
- Duval C., Ovsienko V., Conformally equivariant quantum Hamiltonians,
Selecta Math. (N.S.) 7 (2001), 291-320,
math.DG/9801122.
- Duval C., Ovsienko V., Projectively equivariant quantization and symbol
calculus: noncommutative hypergeometric functions, Lett. Math. Phys.
57 (2001), 61-67, math.QA/0103096.
- Eastwood M., Slovák J., Semiholonomic Verma modules, J. Algebra
197 (1997), 424-448.
- Eastwood M.G., Rice J.W., Conformally invariant differential operators on
Minkowski space and their curved analogues, Comm. Math. Phys.
109 (1987), 207-228, Erratum,
Comm. Math. Phys.
144 (1992), 213.
- Fuks D.B., Cohomology of infinite-dimensional Lie algebras, Contemporary
Soviet Mathematics, Consultants Bureau, New York, 1986.
- Kobayashi S., Nagano T., On filtered Lie algebras and geometric
structures. I, J. Math. Mech. 13 (1964), 875-907.
- Kroeske J., Invariant bilinear differential pairings on parabolic geometries,
Ph.D. thesis, University of Adelaide, 2008, arXiv:0904.3311.
- Kroeske J., Invariant differential pairings, Acta Math. Univ.
Comenian. (N.S.) 77 (2008), 215-244, math.DG/0703866.
- Lecomte P.B.A., On the cohomology of sl(m+1,R) acting on
differential operators and sl(m+1,R)-equivariant symbol,
Indag. Math. (N.S.) 11 (2000), 95-114,
math.DG/9801121.
- Lecomte P.B.A., Ovsienko V.Y., Projectively equivariant symbol calculus,
Lett. Math. Phys. 49 (1999), 173-196,
math.DG/9809061.
- Loubon Djounga S.E., Modules of third-order differential operators on a
conformally flat manifold, J. Geom. Phys. 37 (2001),
251-261.
- Mathonet P., Radoux F., Cartan connections and natural and projectively
equivariant quantizations, J. Lond. Math. Soc. (2) 76
(2007), 87-104, math.DG/0606556.
- Mathonet P., Radoux F., Existence of natural and conformally invariant
quantizations of arbitrary symbols, J. Nonlinear Math. Phys.
17 (2010), 539-556, arXiv:0811.3710.
- Nikitin A.G., Prilipko A.I., Generalized Killing tensors and the symmetry of
the Klein-Gordon-Fock equation, Preprint no. 90.23, Institute of
Mathematics, Kyiv, 1990, 59 pages, math-ph/0506002.
- Ovsienko V., Redou P., Generalized transvectants-Rankin-Cohen brackets,
Lett. Math. Phys. 63 (2003), 19-28,
math.DG/0104232.
- Silhan J., Conformally invariant quantization - towards complete
classification, arXiv:0903.4798.
- Weyl H., The classical groups. Their invariants and representations, Princeton
Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997.
- Wünsch V., On conformally invariant differential operators, Math.
Nachr. 129 (1986), 269-281.
|
|