|
SIGMA 8 (2012), 011, 15 pages arXiv:1203.3272
https://doi.org/10.3842/SIGMA.2012.011
Deformation Quantization by Moyal Star-Product and Stratonovich Chaos
Rémi Léandre a and Maurice Obame Nguema b
a) Laboratoire de Mathématiques, Université de Franche-Comté, 25030, Besancon, France
b) Institut de Mathématiques de Bourgogne, Université de Bourgogne, 21000, Dijon, France
Received November 16, 2011, in final form March 06, 2012; Published online March 15, 2012
Abstract
We make a deformation quantization by Moyal star-product on a space of functions endowed with the normalized Wick product and where Stratonovich chaos are well defined.
Key words:
Moyal product; Connes algebra; Stratonovich chaos; white noise analysis.
pdf (365 kb)
tex (19 kb)
References
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation
theory and quantization. I. Deformations of symplectic structures,
Ann. Physics 111 (1978), 61-110.
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation
theory and quantization. II. Physical applications, Ann. Physics
111 (1978), 111-151.
- Dito G., Deformation quantization on a Hilbert space, in Noncommutative
Geometry and Physics, World Sci. Publ., Hackensack, NJ, 2005, 139-157,
math.QA/0406583.
- Dito J., Star-products and nonstandard quantization for Klein-Gordon
equation, J. Math. Phys. 33 (1992), 791-801.
- Dito J., Star-product approach to quantum field theory: the free scalar field,
Lett. Math. Phys. 20 (1990), 125-134.
- Dito G., Léandre R., Stochastic Moyal product on the Wiener space,
J. Math. Phys. 48 (2007), 023509, 8 pages.
- Dito G., Sternheimer D., Deformation quantization: genesis, developments and
metamorphoses, in Deformation Quantization (Strasbourg, 2001), IRMA
Lect. Math. Theor. Phys., Vol. 1, 9-54, math.QA/0201168.
- Dütsch M., Fredenhagen K., Perturbative algebraic field theory, and
deformation quantization, in Mathematical Physics in Mathematics and Physics
(Siena, 2000), Fields Inst. Commun., Vol. 30, Amer. Math. Soc.,
Providence, RI, 2001, 151-160.
- Gerstenhaber M., On the deformation of rings and algebras, Ann. of
Math. (2) 79 (1964), 59-103.
- Getzler E., Cyclic cohomology and the path integral of Dirac operator,
unpublished.
- Hida T., Kuo H.H., Potthoff J., Streit L., White noise, Mathematics and
its Applications, Vol. 253, Kluwer Academic Publishers Group, Dordrecht,
1993.
- Hu Y.Z., Meyer P.A., Sur les intégrales multiples de Stratonovitch, in
Séminaire de Probabilités, XXII, Lecture Notes in Math.,
Vol. 1321, Springer, Berlin, 1988, 72-81.
- Léandre R., Connes-Hida calculus in index theory, in XIVth
International Congress on Mathematical Physics, World Sci. Publ.,
Hackensack, NJ, 2005, 493-497.
- Léandre R., Deformation quantization in infinite dimensional analysis, in
Trends in Stochastic Analysis, London Math. Soc. Lecture Note Ser.,
Vol. 353, Cambridge Univ. Press, Cambridge, 2009, 303-325.
- Léandre R., Deformation quantization in white noise analysis,
SIGMA 3 (2007), 027, 8 pages, math.QA/0702624.
- Léandre R., Fedosov quantization in white noise analysis,
J. Nonlinear Math. Phys. 15 (2008), suppl. 3, 251-263.
- Léandre R., Wiener analysis and cyclic homology, in Stochastic Analysis and
Mathematical Physics (SAMP/ANESTOC 2002), World Sci. Publ., River Edge,
NJ, 2004, 115-127.
- Maeda Y., Deformation quantization and noncommutative differential geometry,
Sugaku Expositions 16 (2003), 1-23.
- Malliavin P., Stochastic analysis, Grundlehren der Mathematischen
Wissenschaften, Vol. 313, Springer-Verlag, Berlin, 1997.
- Malliavin P., Stochastic calculus of variation and hypoelliptic operators, in
Proceedings of the International Symposium on Stochastic Differential
Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976),
Wiley, New York, 1978, 195-263.
- Meyer P.A., Quantum probability for probabilists, Lecture Notes in
Mathematics, Vol. 1538, Springer-Verlag, Berlin, 1993.
- Nualart D., The Malliavin calculus and related topics, Probability and its
Applications (New York), Springer-Verlag, New York, 1995.
- Obata N., White noise calculus and Fock space, Lecture Notes in
Mathematics, Vol. 1577, Springer-Verlag, Berlin, 1994.
- Solé J.L., Utzet F., Intégrale multiple de Stratonovich pour le
processus de Poisson, in Séminaire de Probabilités, XXV,
Lecture Notes in Math., Vol. 1485, Springer, Berlin, 1991, 270-283.
- Üstünel A.S., An introduction to analysis on Wiener space,
Lecture Notes in Mathematics, Vol. 1610, Springer-Verlag, Berlin,
1995.
- Weinstein A., Deformation quantization, Astérisque (1995), no. 227,
Exp. No. 789, 5, 389-409.
- Witten E., Noncommutative geometry and string field theory, Nuclear
Phys. B 268 (1986), 253-294.
|
|