|
SIGMA 8 (2012), 009, 50 pages arXiv:1110.2157
https://doi.org/10.3842/SIGMA.2012.009
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”
Lessons from Toy-Models for the Dynamics of Loop Quantum Gravity
Valentin Bonzom a and Alok Laddha b
a) Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo, Canada
b) Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802-6300, USA
Received October 11, 2011, in final form February 24, 2012; Published online March 07, 2012
Abstract
We review some approaches to the Hamiltonian dynamics of (loop) quantum gravity, the main issues being the regularization of the Hamiltonian and the continuum limit. First, Thiemann's definition of the quantum Hamiltonian is presented, and then more recent approaches. They are based on toy models which provide new insights into the difficulties and ambiguities faced in Thiemann's construction. The models we use are parametrized field theories, the topological BF model of which a special case is three-dimensional gravity which describes quantum flat space, and Regge lattice gravity.
Key words:
Hamiltonian constraint; loop quantum gravity; parametrized field theories; topological BF theory; discrete gravity.
pdf (818 kb)
tex (136 kb)
References
- Alesci E., Noui K., Sardelli F., Spin-foam models and the physical scalar
product,
Phys. Rev. D 78 (2008), 104009, 16 pages,
arXiv:0807.3561.
- Alesci E., Rovelli C., Regularization of the Hamiltonian constraint compatible
with the spinfoam dynamics, Phys. Rev D 82 (2010), 044007,
17 pages, arXiv:1005.0817.
- Alesci E., Thiemann T., Zipfel A., Linking covariant and canonical LQG: new
solutions to the Euclidean scalar constraint, arXiv:1109.1290.
- Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum
gravity and generalized matrix models, Modern Phys. Lett. A
6 (1991), 1133-1146.
- Anderson R.W., Aquilanti V., Marzuoli A., 3nj morphogenesis and semiclassical
disentangling, J. Phys. Chem. A 113 (2009), 15106-15117,
arXiv:1001.4386.
- Aquilanti V., Bitencourt A.C.P., da S. Ferreira C., Marzuoli A., Ragni M.,
Quantum and semiclassical spin networks: from atomic and molecular physics to
quantum computing and gravity, Phys. Scr. 78 (2008),
058103, 7 pages, arXiv:0901.1074.
- Aquilanti V., Haggard H.M., Hedeman A., Jeevanjee N., Littlejohn R., Yu L.,
Semiclassical mechanics of the Wigner 6j-symbol, arXiv:1009.2811.
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
report, Classical Quantum Gravity 21 (2004), R53-R152,
gr-qc/0404018.
- Ashtekar A., Pawlowski T., Singh P., Quantum nature of the big bang: improved
dynamics, Phys. Rev. D 74 (2006), 084003, 23 pages,
gr-qc/0607039.
- Baez J.C., An introduction to spin foam models of BF theory and quantum
gravity, in Geometry and Quantum Physics (Schladming, 1999),
Lecture Notes in Phys., Vol. 543, Springer, Berlin, 25-93,
gr-qc/9905087.
- Baez J.C., Perez A., Quantization of strings and branes coupled to BF theory,
Adv. Theor. Math. Phys. 11 (2007), 451-469,
gr-qc/0605087.
- Baez J.C., Wise D.K., Crans A.S., Exotic statistics for strings in 4D BF
theory, Adv. Theor. Math. Phys. 11 (2007), 707-749,
gr-qc/0603085.
- Bahr B., Dittrich B., (Broken) gauge symmetries and constraints in Regge
calculus, Classical Quantum Gravity 26 (2009), 225011,
34 pages, arXiv:0905.1670.
- Bahr B., Dittrich B., Improved and perfect actions in discrete gravity,
Phys. Rev. D 80 (2009), 124030, 15 pages,
arXiv:0907.4323.
- Bahr B., Dittrich B., He S., Coarse graining free theories with gauge
symmetries: the linearized case, New J. Phys. 13 (2011),
045009, 34 pages, arXiv:1011.3667.
- Bahr B., Dittrich B., Ryan J.P., Spin foam models with finite groups,
arXiv:1103.6264.
- Bahr B., Dittrich B., Steinhaus S.,
Perfect discretization of reparametrization invariant path integrals,
Phys. Rev. D 83 (2011), 19 pages,
arXiv:1101.4775.
- Baratin A., Girelli F., Oriti D., Diffeomorphisms in group field theories,
Phys. Rev. D 83 (2011), 104051, 22 pages,
arXiv:1101.0590.
- Barrett J.W., Crane L., An algebraic interpretation of the
Wheeler-DeWitt equation, Classical Quantum Gravity
14 (1997), 2113-2121, gr-qc/9609030.
- Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., Pereira R.,
Asymptotics of 4d spin foam models, Gen. Relativity Gravitation
43 (2011), 2421-2436, arXiv:1003.1886.
- Barrett J.W., Fairbairn W.J., Hellmann F., Quantum gravity asymptotics from the
SU(2) 15j-symbol, Internat. J. Modern Phys. A 25
(2010), 2897-2916, arXiv:0912.4907.
- Barrett J.W., Naish-Guzman I., The Ponzano-Regge model, Classical
Quantum Gravity 26 (2011), 155014, 48 pages, arXiv:0803.3319.
- Bergeron M., Semenoff G.W., Szabo R.J., Canonical BF-type topological field
theory and fractional statistics of strings, Nuclear Phys. B
437 (1995), 695-721, hep-th/9407020.
- Blau M., Thompson G., A new class of topological field theories and the
Ray-Singer torsion, Phys. Lett. B 228 (1989), 64-68.
- Blau M., Thompson G., Topological gauge theories of antisymmetric tensor
fields, Ann. Physics 205 (1991), 130-172.
- Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints
in general relativity, arXiv:1003.2857.
- Bonzom V., Spin foam models and the Wheeler-DeWitt equation for the quantum
4-simplex, Phys. Rev. D 84 (2011), 024009, 13 pages,
arXiv:1101.1615.
- Bonzom V., Fleury P., Asymptotics of Wigner 3nj-symbols with small and large
angular momenta: an elementary method, arXiv:1108.1569.
- Bonzom V., Freidel L., The Hamiltonian constraint in 3d Riemannian loop quantum
gravity, Classical Quantum Gravity 28 (2011), 195006,
24 pages, arXiv:1101.3524.
- Bonzom V., Gurau R., Riello A., Rivasseau V., Critical behavior of colored
tensor models in the large N limit, Nuclear Phys. B 853
(2011), 174-195, arXiv:1105.3122.
- Bonzom V., Livine E.R., Yet another recursion relation for the 6j-symbol,
arXiv:1103.3415.
- Bonzom V., Livine E.R., Smerlak M., Speziale S., Towards the graviton from
spinfoams: the complete perturbative expansion of the 3d toy model,
Nuclear Phys. B 804 (2008), 507-526, arXiv:0802.3983.
- Bonzom V., Livine E.R., Speziale S., Recurrence relations for spin foam
vertices, Classical Quantum Gravity 27 (2010), 125002,
32 pages, arXiv:0911.2204.
- Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell
structure, arXiv:1103.3961.
- Bonzom V., Smerlak M., Bubble divergences from cellular cohomology,
Lett. Math. Phys. 93 (2010), 295-305, arXiv:1004.5196.
- Bonzom V., Smerlak M., Bubble divergences from twisted cohomology,
arXiv:1008.1476.
- Bonzom V., Smerlak M.,
Gauge symmetries in spinfoam gravity: the case for 'cellular quantization',
arXiv:1201.4996.
- Carfora M., Marzuoli A., Rasetti M., Quantum tetrahedra, J. Phys.
Chem. A 113 (2009), 15376-15383, arXiv:1001.4402.
- Cattaneo A.S., Cotta-Ramusino P., Fröhlich J., Martellini M., Topological
BF theories in 3 and 4 dimensions, J. Math. Phys. 36
(1995), 6137-6160, hep-th/9505027.
- Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini
A., Zeni M., Four-dimensional Yang-Mills theory as a deformation of
topological BF theory, Comm. Math. Phys. 197 (1998),
571-621, hep-th/9705123.
- Constantinidis C.P., Piguet O., Gieres F., Sarandy M.S., On the symmetries of
BF models and their relation with gravity, J. High Energy Phys.
2002 (2002), no. 1, 017, 25 pages, hep-th/0111273.
- David F., A model of random surfaces with nontrivial critical behaviour,
Nuclear Phys. B 257 (1985), 543-576.
- De Pietri R., Freidel L., so(4) Plebanski action and relativistic
spin-foam model, Classical Quantum Gravity 16 (1999),
2187-2196, gr-qc/9804071.
- Di Francesco P., Ginsparg P., Zinn-Justin J., 2D gravity and random matrices,
Phys. Rep. 254 (1995), no. 1-2, 133 pages,
hep-th/9306153.
- Dittrich B., Eckert F.C., Martin-Benito M., Coarse graining methods for spin
net and spin foam models, arXiv:1109.4927.
- Dittrich B., Höhn P.A., From covariant to canonical formulations of
discrete gravity, Classical Quantum Gravity 27 (2010),
155001, 37 pages, arXiv:0912.1817.
- Dittrich B., Ryan J.P., Phase space descriptions for simplicial 4D geometries,
Classical Quantum Gravity 28 (2011), 065006, 34 pages,
arXiv:0807.2806.
- Dittrich B., Ryan J.P., Simplicity in simplicial phase space, Phys.
Rev. D 82 (2010), 064026, 19 pages, arXiv:1006.4295.
- Dittrich B., Thiemann T., Testing the master constraint programme for loop
quantum gravity. I. General framework, Classical Quantum Gravity
23 (2006), 1025-1065, gr-qc/0411138.
- Dittrich B., Thiemann T., Testing the master constraint programme for loop
quantum gravity. II. Finite-dimensional systems, Classical Quantum
Gravity 23 (2006), 1067-1088, gr-qc/0411139.
- Dittrich B., Thiemann T., Testing the master constraint programme for loop
quantum gravity. III. SL(2,R) models, Classical
Quantum Gravity 23 (2006), 1089-1120, gr-qc/0411140.
- Dittrich B., Thiemann T., Testing the master constraint programme for loop
quantum gravity. IV. Free field theories, Classical Quantum Gravity
23 (2006), 1121-1142, gr-qc/0411141.
- Dittrich B., Thiemann T., Testing the master constraint programme for loop
quantum gravity. V. Interacting field theories, Classical Quantum
Gravity 23 (2006), 1143-1162, gr-qc/0411142.
- Dupuis M., Livine E.R., Pushing the asymptotics of the 6j-symbol further,
Phys. Rev. D 80 (2009), 024035, 14 pages,
arXiv:0905.4188.
- Dupuis M., Livine E.R., The 6j-symbol: recursion, correlations and
asymptotics, Classical Quantum Gravity 27 (2010), 135003,
15 pages, arXiv:0910.2425.
- Fairbairn W.J., Perez A., Extended matter coupled to BF theory, Phys.
Rev. D 78 (2008), 024013, 21 pages, arXiv:0709.4235.
- Freidel L., Group field theory: an overview, Internat. J. Theoret.
Phys. 44 (2005), 1769-1783, hep-th/0505016.
- Freidel L., Krasnov K., Puzio R., BF description of higher-dimensional gravity
theories, Adv. Theor. Math. Phys. 3 (1999), 1289-1324,
hep-th/9901069.
- Freidel L., Louapre D., Ponzano-Regge model revisited. I. Gauge fixing,
observables and interacting spinning particles, Classical Quantum
Gravity 21 (2004), 5685-5726, arXiv:hep-th/0401076.
- Freidel L., Speziale S., On the relations between gravity and BF theories,
arXiv:1201.4247.
- Freidel L., Speziale S., Twisted geometries: a geometric parametrisation of
SU(2) phase space, Phys. Rev. D 82 (2010), 084040,
16 pages, arXiv:1001.2748.
- Freidel L., Starodubtsev A., Quantum gravity in terms of topological
observables, hep-th/0501191.
- Frohman C., Kania-Bartoszynska J., Dubois' torsion, A-polynomial and quantum
invariants, arXiv:1101.2695.
- Gambini R., Lewandowski J., Marolf D., Pullin J., On the consistency of the
constraint algebra in spin network quantum gravity, Internat. J.
Modern Phys. D 7 (1998), 97-109, arXiv:gr-qc/9710018.
- Gieres F., Grimstrup J.M., Nieder H., Pisar T., Schweda M., Topological field
theories and their symmetries within the Batalin-Vilkovisky framework,
Phys. Rev. D 66 (2002), 025027, 14 pages,
hep-th/0111258.
- Giulini D., Marolf D., On the generality of refined algebraic quantization,
Classical Quantum Gravity 16 (1999), 2479-2488,
gr-qc/9812024.
- Gross M., Tensor models and simplicial quantum gravity in >2-D,
Nuclear Phys. B Proc. Suppl. 25A (1992), 144-149.
- Gurau R., The complete 1/N expansion of colored tensor models in arbitrary
dimension, arXiv:1102.5759.
- Gurau R., Ryan J.P., Colored tensor models - a review, arXiv:1109.4812.
- Hájícek P., Isham C.J., The symplectic geometry of a parametrized
scalar field on a curved background, J. Math. Phys. 37
(1996), 3505-3521, gr-qc/9510028.
- Han M., Thiemann T., On the relation between operator constraint, master
constraint, reduced phase space and path integral quantization,
Classical Quantum Gravity 27 (2010), 225019, 46 pages,
arXiv:0911.3428.
- Horowitz G.T., Exactly soluble diffeomorphism invariant theories, Comm.
Math. Phys. 125 (1989), 417-437.
- Jeffrey L.C., Chern-Simons-Witten invariants of lens spaces and torus
bundles, and the semiclassical approximation, Comm. Math. Phys.
147 (1992), 563-604.
- Kazakov V.A., Bilocal regularization of models of random surfaces,
Phys. Lett. B 150 (1985), 282-284.
- Kitaev A.Y., Fault-tolerant quantum computation by anyons, Ann.
Physics 303 (2003), 2-30, quant-ph/9707021.
- Kuchar K., Parametrized scalar field on R×S1: dynamical
pictures, spacetime diffeomorphisms, and conformal isometries, Phys.
Rev. D 39 (1989), 1579-1593.
- Laddha A., Varadarajan M., Hamiltonian constraint in polymer parametrized field
theory, Phys. Rev D 83 (2011), 025019, 27 pages,
arXiv:1011.2463.
- Laddha A., Varadarajan M., Polymer quantization of the free scalar field and
its classical limit, Classical Quantum Gravity 27 (2010),
175010, 45 pages, arXiv:1001.3505.
- Laddha A., Varadarajan M., The diffeomorphism constraint operator in loop
quantum gravity, Classical Quantum Gravity 28 (2011),
195010, 29 pages, arXiv:1105.0636.
- Levin M.A., Wen X.G., String-net condensation: a physical mechanism for
topological phases, Phys. Rev. B 71 (2005), 045110,
21 pages, cond-mat/0404617.
- Lewandowski J., Marolf D., Loop constraints: a habitat and their algebra,
Internat. J. Modern Phys. D 7 (1998), 299-330,
gr-qc/9710016.
- Lewandowski J., Okolów A., Sahlmann H., Thiemann T., Uniqueness of
diffeomorphism invariant states on holonomy-flux algebras, Comm.
Math. Phys. 267 (2006), 703-733, gr-qc/0504147.
- Livine E.R., Speziale S., New spinfoam vertex for quantum gravity,
Phys. Rev. D 76 (2007), 084028, 14 pages,
arXiv:0705.0674.
- Livine E.R., Tambornino J., Spinor representation for loop quantum gravity,
J. Math. Phys. 53 (2012), 012503, 33 pages,
arXiv:1105.3385.
- Lucchesi C., Piguet O., Sorella S.P., Renormalization and finiteness of
topological BF theories, Nuclear Phys. B 395 (1993),
325-353, hep-th/9208047.
- Maggiore N., Sorella S.P., Perturbation theory for antisymmetric tensor fields
in four dimensions, Internat. J. Modern Phys. A 8 (1993),
929-945, hep-th/9204044.
- Nicolai H., Peeters K., Zamaklar M., Loop quantum gravity: an outside view,
Classical Quantum Gravity 22 (2005), R193-R247,
hep-th/0501114.
- Noui K., Perez A., Three-dimensional loop quantum gravity: physical scalar
product and spin-foam models, Classical Quantum Gravity 22
(2005), 1739-1761, gr-qc/0402110.
- Noui K., Perez A., Pranzetti D., Canonical quantization of non-commutative
holonomies in 2+1 loop quantum gravity, arXiv:1105.0439.
- Ooguri H., Partition functions and topology-changing amplitudes in the
three-dimensional lattice gravity of Ponzano and Regge, Nuclear
Phys. B 382 (1992), 276-304, hep-th/9112072.
- Ooguri H., Topological lattice models in four dimensions, Modern Phys.
Lett. A 7 (1992), 2799-2810, hep-th/9205090.
- Oriti D., The group field theory approach to quantum gravity: some recent
results, arXiv:0912.2441.
- Perez A., Introduction to loop quantum gravity and spin foams,
gr-qc/0409061.
- Perez A., Regularization ambiguities in loop quantum gravity, Phys.
Rev. D 73 (2006), 044007, 18 pages, gr-qc/0509118.
- Perez A., Pranzetti D., On the regularization of the constraint algebra of
quantum gravity in 2+1 dimensions with a nonvanishing cosmological constant,
Classical Quantum Gravity 27 (2010), 145009, 20 pages,
arXiv:1001.3292.
- Ponzano G., Regge T., Semi-classical limit of Racah coefficients, in
Spectroscopic and Group Theoretical Methods in Physics, Editor F. Bloch,
North-Holland, Amsterdam, 1968, 1-58.
- Roberts J., Classical 6j-symbols and the tetrahedron, Geom. Topol.
3 (1999), 21-66, math-ph/9812013.
- Rovelli C., A new look at loop quantum gravity, Classical Quantum
Gravity 28 (2011), 114005, 24 pages, arXiv:1004.1780.
- Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance,
arXiv:1107.2310.
- Rovelli C., Speziale S., On the geometry of loop quantum gravity on a graph,
Phys. Rev. D 82 (2010), 044018, 6 pages,
arXiv:1005.2927.
- Rozansky L., A large k asymptotics of Witten's invariant of Seifert
manifolds, Comm. Math. Phys. 171 (1995), 279-322,
hep-th/9303099.
- Sasakura N., Tensor model for gravity and orientability of manifold,
Modern Phys. Lett. A 6 (1991), 2613-2623.
- Schulten K., Gordon R.G., Semiclassical approximations to 3j- and
6j-coefficients for quantum-mechanical coupling of angular momenta,
J. Math. Phys. 16 (1975), 1971-1988.
- Smolin L., The classical limit and the form of the Hamiltonian constraint in
nonperturbative quantum general relativity, gr-qc/9609034.
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cambridge, 2007,
gr-qc/0110034.
- Thiemann T., Quantum spin dynamics (QSD), Classical Quantum Gravity
15 (1998), 839-873, gr-qc/9606089.
- Thiemann T., Quantum spin dynamics (QSD). II. The kernel of the
Wheeler-DeWitt constraint operator, Classical Quantum Gravity
15 (1998), 875-905, gr-qc/9606090.
- Thiemann T., Quantum spin dynamics (QSD). III. Quantum constraint algebra
and physical scalar product in quantum general relativity, Classical
Quantum Gravity 15 (1998), 1207-1247, gr-qc/9705017.
- Thiemann T., Quantum spin dynamics (QSD). IV. 2+1 Euclidean quantum gravity as
a model to test 3+1 Lorentzian quantum gravity, Classical Quantum
Gravity 15 (1998), 1249-1280, gr-qc/9705018.
- Thiemann T., Quantum spin dynamics. VIII. The master constraint,
Classical Quantum Gravity 23 (2006), 2249-2265,
gr-qc/0510011.
- Thiemann T., The Phoenix Project: master constraint programme for loop
quantum gravity, Classical Quantum Gravity 23 (2006),
2211-2247, gr-qc/0305080.
- Varshalovich D.A., Moskalev A.N., Khersonskii V.K., Quantum theory of angular
momentum, World Scientific Publishing Co. Inc., Teaneck, NJ, 1988.
- Witten E., 2+1 dimensional gravity as an exactly soluble system,
Nuclear Phys. B 311 (1988), 46-78.
- Witten E., On quantum gauge theories in two dimensions, Comm. Math.
Phys. 141 (1991), 153-209.
- Witten E., Topology-changing amplitudes in (2+1)-dimensional gravity,
Nuclear Phys. B 323 (1989), 113-140.
- Yu L., Asymptotic limits of the Wigner 15j-symbol with small quantum numbers,
arXiv:1104.3641.
- Yu L., Semiclassical analysis of the Wigner 12j symbol with one small angular
momentum, Phys. Rev. A 84 (2011), 022101, 13 pages,
arXiv:1104.3275.
- Yu L., Littlejohn R.G., Semiclassical analysis of the Wigner 9j symbol with
small and large angular momenta, Phys. Rev. A 83 (2011),
052114, 16 pages, arXiv:1104.1499.
- Yutsis A.P., Levinson I.B., Vanagas V.V., Mathematical apparatus of the theory
of angular momentum, Israel Program for Scientific Translations, Jerusalem,
1962.
|
|