|
SIGMA 8 (2012), 003, 12 pages arXiv:1109.2867
https://doi.org/10.3842/SIGMA.2012.003
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
Andrei V. Smilga
SUBATECH, Université de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France
Received November 10, 2011, in final form January 04, 2012; Published online January 08, 2012
Abstract
We present the proof of the HRR theorem
for a generic complex compact manifold by evaluating the functional integral
for the Witten index of the appropriate supersymmetric quantum mechanical system.
Key words:
index; Dolbeault; supersymmetry.
pdf (382 kb)
tex (19 kb)
References
- Witten E.,
Quantum field theory and Jones polynomials,
Comm. Math. Phys. 121 (1989), 351-399.
- Atiyah M.F., Singer I.M.,
The index of elliptic operators. I,
Ann. of Math. (2) 87 (1968), 484-530.
Atiyah M.F., Singer I.M.,
The index of elliptic operators. III,
Ann. of Math. (2) 87 (1968), 546-604.
Atiyah M.F., Singer I.M.,
The index of elliptic operators. IV,
Ann. of Math. (2) 93 (1971), 119-138.
Atiyah M.F., Singer I.M.,
The index of elliptic operators. V,
Ann. of Math. (2) 93 (1971), 139-149.
- Alvarez-Gaumé L.,
Supersymmetry and the Atiyah-Singer index theorem,
Comm. Math. Phys. 90 (1983), 161-173.
Friedan D., Windey P.,
Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly,
Nuclear Phys. B 235 (1984), 395-416.
Windey P.,
Supersymmetric quantum mechanics and the Atiyah-Singer index theorem,
Acta Phys. Polon. B 15 (1984), 435-452.
- Witten E.,
Dynamical breaking of supersymmetry,
Nuclear Phys. B 188 (1981), 513-554.
Witten E.,
Constraints on supersymmetry breaking,
Nuclear Phys. B 202 (1982), 253-316.
- Ivanov E.A., Smilga A.V.,
Dirac operator on complex manifolds and supersymmetric quantum mechanics,
arXiv:1012.2069.
- Bismut J.-M.,
A local index theorem for non-Kähler manifolds,
Math. Ann. 284 (1989), 681-699.
- Braden H.W.,
Sigma-models with torsion,
Ann. Physics 171 (1986), 433-462.
- Mavromatos N.E.,
A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion,
J. Phys. A: Math. Gen. 21 (1988), 2279-2290.
- Fedoruk S.A., Ivanov E.A., Smilga A.V.,
Real and complex supersymmetric d=1 sigma models with torsion, in preparation.
- Kirchberg A., Länge J.D., Wipf A.,
Extended supersymmetries and the Dirac operator,
Ann. Physics 315 (2005), 467-487,
hep-th/0401134.
- Smilga A.V.,
Dolbeault complex on S4\{·} and S6\{·} through supersymmetric glasses,
SIGMA 7 (2011), 105, 14 pages,
arXiv:1105.3935.
- Cecotti S., Girardello L.,
Functional measure, topology and dynamical supersymmetry breaking,
Phys. Lett. B 110 (1982), 39-43.
Girardello L., Imbimbo C., Mukhi S.,
On constant configurations and evaluation of the Witten index,
Phys. Lett. B 132 (1983), 69-74.
- Obukhov Y.N.,
Spectral geometry of the Riemann-Cartan space-time,
Nuclear Phys. B 212 (1983), 237-254.
Peeters K., Waldron A.,
Spinors on manifolds with boundary: APS index theorem with torsion,
J. High Energy Phys. 1999 (1999), no. 2, 024, 42 pages,
hep-th/9901016.
- Gauduchon P.,
Le théorème de l'excentricité nulle,
C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A387-A390.
- Hirzebruch F.,
Arithmetic genera and the theorem of Riemann-Roch for algebraic varietes,
Proc. Nat. Acad. Sci. USA 40 (1954), 110-114.
Hirzebruch F.,
Topological methods in algebraic geometry,
Springer-Verlag, Berlin, 1978.
- Wu Y.S., Zee A.,
Massless fermions and Kaluza-Klein theory with torsion,
J. Math. Phys. 25 (1984), 2696-2703.
- Smilga A.V.,
Non-integer flux: why it does not work,
arXiv:1104.3986.
|
|