|
SIGMA 7 (2011), 099, 26 pages arXiv:1107.3544
https://doi.org/10.3842/SIGMA.2011.099
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl2)
Paul Terwilliger
Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Received July 19, 2011, in final form October 10, 2011; Published online October 25, 2011; Misprint in Lemma 7.1 is corrected March 16, 2012
Abstract (this is shortened html-version of the paper's abstract)
Around 1992 A. Zhedanov introduced the Askey-Wilson algebra
AW(3). Recently we introduced a central extension Δ of AW(3)
called the universal Askey-Wilson algebra. In this
paper we discuss a connection between
Δ and the quantum algebra Uq(sl2).
Our main result is an
algebra injection from Δ into
a relative of
Uq(sl2);
the relative is obtained
from
Uq(sl2)
by adjoining three mutually
commuting indeterminates. We describe the
injection using the equitable presentation
of Uq(sl2).
Key words:
Askey-Wilson relations; Leonard pair; Casimir element.
pdf (534 kb)
tex (27 kb)
[previous version:
pdf (534 kb)
tex (27 kb)]
References
- Alnajjar H.,
Leonard pairs from the equitable generators of Uq(sl2),
Dirasat Pure Sciences, Vol. 37, University of Jordan, 2010,
available at http://www.ju.edu.jo/sites/Academic/h.najjar.
- Alnajjar H.,
Leonard pairs associated with the equitable generators of the quantum algebra Uq(sl2),
Linear Multilinear Algebra 59 (2011), 1127-1142.
- Alperin R.C.,
Notes: PSL2(Z)=Z2*Z3,
Amer. Math. Monthly 100 (1993), 385-386.
- Askey R., Wilson J.,
Some basic hypergeometric polynomials that generalize Jacobi polynomials,
Mem. Amer. Math. Soc. 54 (1985), no. 319.
- Baseilhac P.,
An integrable structure related with tridiagonal algebras,
Nuclear Phys. B 705 (2005), 605-619,
math-ph/0408025.
- Granovski Ya.I., Zhedanov A.S.,
Linear covariance algebra for slq(2),
J. Phys. A: Math. Gen. 26 (1993), L357-L359.
- Ismail M.,
Classical and quantum orthogonal polynomials in one variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2009.
- Ito T., Terwilliger P.,
Double affine Hecke algebras of rank 1 and the Z3-symmetric Askey-Wilson relations,
SIGMA 6 (2010), 065, 9 pages,
arXiv:1001.2764.
- Ito T., Terwilliger P., Weng C.-W.,
The quantum algebra Uq(sl2) and its equitable presentation,
J. Algebra 298 (2006), 284-301,
math.QA/0507477.
- Jantzen J.C.,
Lectures on quantum groups,
Graduate Studies in Mathematics, Vol. 6,
American Mathematical Society, Providence, RI, 1996.
- Koekoek R., Lesky P.A., Swarttouw R.,
Hypergeometric orthogonal polynomials and their q-analogues,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
- Koornwinder T.H.,
The relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case,
SIGMA 3 (2007), 063, 15 pages,
math.QA/0612730.
- Lavrenov A.N.,
Relativistic exactly solvable models,
in Proceedings VIII International Conference on Symmetry Methods in Physics (Dubna, 1997),
Phys. Atomic Nuclei 61 (1998), 1794-1796.
- Odake S., Sasaki R.,
Unified theory of exactly and quasiexactly solvable "discrete" quantum mechanics. I. Formalism,
J. Math. Phys. 51 (2010), 083502, 24 pages,
arXiv:0903.2604.
- Terwilliger P.,
Two linear transformations each tridiagonal with respect to an eigenbasis of the other,
Linear Algebra Appl. 330 (2001), 149-203,
math.RA/0406555.
- Terwilliger P.,
Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array,
Des. Codes Cryptogr. 34 (2005), 307-332,
math.RA/0306291.
- Terwilliger P.,
The universal Askey-Wilson algebra,
SIGMA 7 (2011), 069, 24 pages,
arXiv:1104.2813.
- Terwilliger P., Vidunas R.,
Leonard pairs and the Askey-Wilson relations,
J. Algebra Appl. 3 (2004), 411-426,
math.QA/0305356.
- Wiegmann P.B., Zabrodin A.V.,
Algebraization of difference eigenvalue equations related to Uq(sl2),
Nuclear Phys. B 451 (1995), 699-724,
cond-mat/9501129.
- Zhedanov A.S.,
"Hidden symmetry" of the Askey-Wilson polynomials,
Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|