|
SIGMA 7 (2011), 084, 20 pages arXiv:1108.5005
https://doi.org/10.3842/SIGMA.2011.084
Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian q-Oscillator and their Entanglement
Yusef Maleki
Department of Physics, University of Mohaghegh Ardabili, Ardabil, 179, Iran
Received May 27, 2011, in final form August 19, 2011; Published online August 25, 2011
Abstract
In this paper, q-deformed oscillator for pseudo-Hermitian
systems is investigated and pseudo-Hermitian appropriate coherent
and squeezed states are studied. Also, some basic properties of
these states is surveyed. The over-completeness property of the
para-Grassmannian pseudo-Hermitian coherent states
(PGPHCSs) examined, and also the stability of coherent and
squeezed states discussed. The pseudo-Hermitian supercoherent states
as the product of a pseudo-Hermitian bosonic coherent state and a
para-Grassmannian pseudo-Hermitian coherent state introduced, and
the method also developed to define pseudo-Hermitian supersqueezed
states. It is also argued that, for q-oscillator algebra of k+1
degree of nilpotency based on the changed ladder operators, defined
in here, we can obtain deformed SUq2(2) and SUq2k(2)
and also SUq2k(1,1). Moreover, the entanglement of
multi-level para-Grassmannian pseudo-Hermitian coherent state will
be considered. This is done by choosing an appropriate weight
function, and integrating over tensor product of PGPHCSs.
Key words:
para-Grassmann variables; coherent state; squeezed state; pseudo-Hermiticity; entanglement.
pdf (412 Kb)
tex (20 Kb)
References
- Bender C.M., Boettcher S.,
Real spectra in non-Hermitian Hamiltonians having PT symmetry,
Phys. Rev. Lett. 80 (1998), 5243-5246,
math-ph/9712001.
- Bender C.M., Boettcher S., Meisenger P.N.,
PT-symmetric quantum mechanics,
J. Math. Phys. 40 (1999), 2201-2229,
quant-ph/9809072.
- Bender C.M., Dunne G.V.,
Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian,
J. Math. Phys. 40 (1999), 4616-4621,
quant-ph/9812039.
- Mostafazadeh A.,
Pseudo-Hermiticity and generalized PT- and CPT-symmetries,
J. Math. Phys. 44 (2003), 974-989,
math-ph/0209018.
- Mostafazadeh A.,
Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,
J. Math. Phys. 43 (2002), 205-214,
math-ph/0107001.
- Mostafazadeh A.,
Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum,
J. Math. Phys. 43 (2002), 2814-2816,
math-ph/0110016.
- Perlomov A.,
Generalized coherent states and their applications,
Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986.
- Fujii K.,
Introduction to coherent states and quantum information theory,
quant-ph/0112090.
- Najarbashi G., Maleki Y.,
Maximal entanglement of two-qubit states constructed by linearly independent coherent states,
Internat. J. Theoret. Phys. 50 (2011), 2601-2608,
arXiv:1007.1387.
- Najarbashi G., Maleki Y.,
Entanglement of Grassmannian coherent states for multi-partite n-level systems,
SIGMA 7 (2011), 011, 11 pages,
arXiv:1008.4836.
- Najarbashi G., Maleki Y.,
Entanglement in multi-qubit pure fermionic coherent states,
arXiv:1004.3703.
- Fu H., Wang X., Solomon A.I.,
Maximal entanglement of nonorthogonal states: classification,
Phys. Lett. A 291 (2001), 73-76,
quant-ph/0105099.
- Wang X., Sanders B.C.,
Multipartite entangled coherent states,
Phys. Rev. A 65 (2001), 012303, 7 pages,
quant-ph/0104011.
- Wang X.,
Bipartite entangled non-orthogonal states,
J. Phys. A: Math. Gen. 35 (2002), 165-173,
quant-ph/0102011.
- Wang X., Sanders B.C., Pan S.-H.,
Entangled coherent states for systems with SU(2) and SU(1,1) symmetries,
J. Phys. A: Math. Gen. 33 (2000), 7451-7467,
quant-ph/0001073.
- El Baz M., Hassouni Y.,
On the construction of generalized Grassmann representatives of state vectors,
J. Phys. A: Math. Gen. 37 (2004), 4361-4368,
math-ph/0409038.
- El Baz M.,
On the construction of generalized Grassmann coherent states,
math-ph/0511028.
- El Baz M., Hassouni Y., Madouri F.,
Z3-graded Grassmann variables, parafermions and their coherent states,
Phys. Lett. B 536 (2002), 321-326,
math-ph/0206017.
- Cahill K.E., Glauber R.J.,
Density operators for fermions,
Phys. Rev. A 59 (1999), 1538-1555,
physics/9808029.
- Mansour T., Schork M.,
On linear differential equations with variable coefficients involving a para-Grassmann variable,
J. Math. Phys. 51 (2010), 043512, 21 pages.
- Mansour T., Schork M.,
On linear differential equations involving a paragrassmann variable,
SIGMA 5 (2009), 073, 26 pages,
arXiv:0907.2584.
- Cabra D.C., Moreno E.F., Tanasa A.,
Para-Grassmann variables and coherent states,
SIGMA 2 (2006), 087, 8 pages,
hep-th/0609217.
- Trifonov D.A.,
Pseudo-boson coherent and Fock states,
in Trends in Differential Geometry, Complex Analysis and Mathematical Physics, Editors K. Sekigawa et al., World Scientific, 2009, 241-250,
arXiv:0902.3744.
- Cherbal O., Drir M., Maamache M., Trifonov D.A.,
Fermionic coherent states for pseudo-Hermitian two-level systems,
J. Phys. A: Math. Theor. 40 (2007), 1835-1844,
quant-ph/0608177.
- Najarbashi G., Fasihi M.A., Fakhri H.,
Generalized Grassmannian coherent states for pseudo-Hermitian n-level systems,
J. Phys. A: Math. Theor. 43 (2010), 325301, 10 pages,
arXiv:1007.1392.
- Daoud M., Hassouni Y., Kibler M.,
On generalized super-coherent states,
Phys. Atomic Nuclei 61 (1998), 1821-1824,
quant-ph/9804046.
- Daoud M., Kibler M.,
A fractional supersymmetric oscillator and its coherent states,
math-ph/9912024.
- Nieto M.M.,
Coherent states and squeezed states, supercoherent states and supersqueezed states,
in On Klauder's Path: a Field Trip, World Sci. Publ., River Edge, NJ, 1994, 147-155,
hep-th/9212116.
- Nielsen M.A., Chuang I.L.,
Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
- Petz D.,
Quantum information theory and quantum statistics, Springer-Verlag, Berlin, 2008.
- Majid S., Rodríguez-Plaza M.J.,
Random walk and the heat equation on superspace and anyspace,
J. Math. Phys. 35 (1994), 3753-3760.
- Kerner R.,
Z3-graded algebras and the cubic root of the supersymmetry translations,
J. Math. Phys. 33 (1992), 403-411.
- Filippov A.T., Isaev A.P., Kurdikov A.B.,
Para-Grassmann differential calculus,
Theoret. and Math. Phys. 94 (1993), 150-165,
hep-th/9210075.
- Isaev A.P.,
Para-Grassmann integral, discrete systems and quantum groups,
Internat. J. Modern Phys. A 12 (1997), 201-206,
q-alg/9609030.
- Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A.,
A note on Gaussian integrals over para-Grassmann variables,
Internat. J. Modern Phys. A 19 (2004), 1705-1714,
hep-th/0209172.
- Ilinski K.N., Kalinin G.V., Stepanenko A.S.,
q-functional Wick's theorems for particles with exotic statistics,
J. Phys. A: Math. Gen. 30 (1997), 5299-5310,
hep-th/9704181.
- El Baz M., Fresneda R., Gazeau J.P., Hassouni Y.,
Coherent state quantization of paragrassmann algebras,
J. Phys. A: Math. Theor. 43 (2010), 385202, 15 pages,
arXiv:1004.4706.
- Chaichian M., Demichev A.P.,
Polynomial algebras and higher spins,
Phys. Lett. A 222 (1996), 14-20,
hep-th/9602008.
- Daoud M., Kibler M.,
Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics,
Phys. Lett. A 321 (2004), 147-151,
math-ph/0312019.
- Cherbal O., Drir M., Maamache M., Trifonov D.A.,
Supersymmetric extension of non-Hermitian su(2) Hamiltonian and supercoherent states,
SIGMA 6 (2010), 096, 11 pages,
arXiv:1009.5293.
|
|