Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 7 (2011), 074, 9 pages      arXiv:1107.4416      https://doi.org/10.3842/SIGMA.2011.074
Contribution to the Proceedings of the Conference “Integrable Systems and Geometry”

A Class of Special Solutions for the Ultradiscrete Painlevé II Equation

Shin Isojima and Junkichi Satsuma
Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5258, Japan

Received April 01, 2011, in final form July 14, 2011; Published online July 22, 2011

Abstract
A class of special solutions are constructed in an intuitive way for the ultradiscrete analog of q-Painlevé II (q-PII) equation. The solutions are classified into four groups depending on the function-type and the system parameter.

Key words: ultradiscretization; Painlevé equation; Airy equation; q-difference equation.

pdf (308 kb)   tex (443 kb)

References

  1. Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett. 76 (1996), 3247-3250.
  2. Grammticos B., Ohta Y., Ramani A., Takahashi D., Tamizhmani K.M., Cellular automata and ultra-discrete Painlevé equations, Phys. Lett. A 226 (1997), 53-58, solv-int/9603003.
  3. Takahashi D., Tokihiro T., Grammticos B., Ohta Y., Ramani A., Constructing solutions to the ultradiscrete Painlevé equations, J. Phys. A: Math. Gen. 30 (1997), 7953-7966.
  4. Ramani A., Takahashi D., Grammticos B., Ohta Y., The ultimate discretisation of the Painlevé equations, Phys. D 114 (1998), 185-196.
  5. Isojima S., Grammaticos B., Ramani A., Satsuma J., Ultradiscretization without positivity, J. Phys. A: Math. Gen. 39 (2006), 3663-3672.
  6. Kasman A., Lafortune S., When is negativity not a problem for the ultradiscrete limit?, J. Math. Phys. 47 (2006), 103510, 16 pages, nlin.SI/0609034.
  7. Ormerod C.M., Hypergeometric solutions to an ultradiscrete Painlevé equation, J. Nonlinear Math. Phys. 17 (2010), 87-102, nlin.SI/0610048.
  8. Mimura N., Isojima S., Murata M., Satsuma J., Singularity confinement test for ultradiscrete equations with parity variables, J. Phys. A: Math. Theor. 42 (2009), 315206, 7 pages.
  9. Isojima S., Konno K., Mimura N., Murata M., Satsuma J., Ultradiscrete Painlevé II equation and a special function solution, J. Phys. A: Math. Theor. 44 (2011), 175201, 10 pages.
  10. Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the q-Painlevé equation of type (A1+A'1)(1), Int. Math. Res. Not. 2006 (2006), Art. ID 84619, 26 pages, nlin.SI/0607065.


Previous article   Next article   Contents of Volume 7 (2011)