|
SIGMA 7 (2011), 056, 41 pages arXiv:1105.4952
https://doi.org/10.3842/SIGMA.2011.056
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems”
Quantum Group Uq(sl(2)) Symmetry and Explicit Evaluation of the One-Point Functions of the Integrable Spin-1 XXZ Chain
Tetsuo Deguchi and Jun Sato
Department of Physics, Graduate School of Humanities and Sciences, Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Received October 29, 2010, in final form May 26, 2011; Published online June 10, 2011
Abstract
We show some symmetry relations among the correlation functions
of the integrable higher-spin XXX and XXZ spin chains, where
we explicitly evaluate the multiple integrals
representing the one-point functions in the spin-1 case.
We review the multiple-integral representations of
correlation functions for the integrable higher-spin XXZ chains derived
in a region of the massless regime including the anti-ferromagnetic point.
Here we make use of the gauge transformations between
the symmetric and asymmetric R-matrices, which correspond to
the principal and homogeneous gradings, respectively, and we
send the inhomogeneous parameters to the set of complete 2s-strings.
We also give a numerical support for the analytical expression of
the one-point functions in the spin-1 case.
Key words:
quantum group; integrable higher-spin XXZ chain; correlation function; multiple integral; fusion method; Bethe ansatz; one-point function.
pdf (678 kb)
tex (125 kb)
References
- Korepin V.E., Bogoliubov N.M., Izergin A.G.,
Quantum inverse scattering method and correlation functions,
Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993.
- Jimbo M., Miwa T.,
Algebraic analysis of solvable lattice models,
CBMS Regional Conference Series in Mathematics, Vol. 85, American Mathematical Society, Providence, RI, 1995.
- Kitanine N., Maillet J.M., Slavnov N.A., Terras V.,
On the algebraic Bethe ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain,
hep-th/0505006.
- Jimbo M., Miki K., Miwa T., Nakayashiki A.,
Correlation functions of the XXZ model for Δ<−1,
Phys. Lett. A 168 (1992), 256-263,
hep-th/9205055.
- Jimbo M., Miwa T.,
Quantum KZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime,
J. Phys. A: Math. Gen. 29 (1996), 2923-2958,
hep-th/9601135.
- Miwa T., Takeyama Y.,
Determinant formula for the solutions of the quantum Knizhnik-Zamolodchikov equation with |q|=1,
in Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc.,
Providence, RI, 1999, 377-393,
math.QA/9812096.
- Slavnov N.A.,
Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,
Theoret. and Math. Phys. 79 (1989), 502-508.
- Maillet J.M., Sanchez de Santos J.,
Drinfel'd twists and algebraic Bethe ansatz,
in L.D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 201, Amer. Math. Soc., Providence, RI, 2000, 137-178,
q-alg/9612012.
- Kitanine N., Maillet J.M., Terras V.,
Form factors of the XXZ Heisenberg spin-1/2 finite chain,
Nuclear Phys. B 554 (1999), 647-678,
math-ph/9807020.
- Maillet J.M., Terras V.,
On the quantum inverse scattering problem,
Nuclear Phys. B 575 (2000), 627-644,
hep-th/9911030.
- Kitanine N., Maillet J.M., Terras V.,
Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field,
Nuclear Phys. B 567 (2000), 554-582.
- Göhmann F., Klümper A., Seel A.,
Integral representations for correlation functions of the XXZ chain at finite temperature,
J. Phys. A: Math. Gen. 37 (2004), 7625-7651,
hep-th/0405089.
- Damerau J., Göhmann F., Hasenclever N.P., Klümper A.,
Density matrices for finite segments of Heisenberg chains of arbitrary length,
J. Phys. A: Math. Theor. 40 (2007), 4439-4453,
cond-mat/0701463.
- Jimbo M., Miwa T., Smirnov F.,
Hidden Grassmann structure in the XXZ model III: introducing the Matsubara direction,
J. Phys. A: Math. Theor. 42 (2009), 304018, 31 pages,
arXiv:0811.0439.
- Sakai K.,
Dynamical correlation functions of the XXZ model at finite temperature,
J. Phys. A: Math. Theor. 40 (2007), 7523-7542,
cond-mat/0703319.
- Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V.,
Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions,
J. Stat. Mech. Theory Exp. 2009 (2009), P04003, 66 pages,
arXiv:0808.0227.
- Kitanine N.,
Correlation functions of the higher spin XXX chains,
J. Phys. A: Math. Gen. 34 (2001), 8151-8169,
math-ph/0104016.
- Castro-Alvaredo O.A., Maillet J.M.,
Form factors of integrable Heisenberg (higher) spin chains,
J. Phys. A: Math. Theor. 40 (2007), 7451-7471,
hep-th/0702186.
- Deguchi T., Matsui C.,
Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry,
Nuclear Phys. B 814 (2009), 405-438,
arXiv:0807.1847.
- Deguchi T., Matsui C.,
Correlation functions of the integrable higher-spin XXX and XXZ spin chains through the fusion method,
Nuclear Phys. B 831 (2010), 359-407,
arXiv:0907.0582.
- Deguchi T., Matsui C.,
Algebraic aspects of the correlation functions of the integrable higher-spin XXX and XXZ spin chains with arbitrary entries,
in the Proceedings of "Infinite analysis 09 - New Trends in Quantum Integrable Systems" (July 27-31, 2009, Kyoto University, Japan), to appear,
arXiv:1005.0888.
- Terras V.,
Drinfel'd twists and functional Bethe ansatz,
Lett. Math. Phys. 48 (1999), 263-276,
math-ph/9902009.
- Bougourzi A.H., Weston R.A.,
N-point correlation functions of the spin-1 XXZ model,
Nuclear Phys. B 417 (1994), 439-462,
hep-th/9307124.
- Göhmann F., Seel A., Suzuki J.,
Correlation functions of the integrable isotropic spin-1 chain at finite temperature,
J. Stat. Mech. Theory Exp. 2010 (2010), P11011, 43 pages,
arXiv:1008.4440.
- Zamolodchikov A.B., Fateev V.A.,
A model factorized S-matrix and an integrable spin-1 Heisenberg chain,
Soviet J. Nuclear Phys. 32 (1980), 298-303.
- Kulish P.P., Reshetikhin N.Yu., Sklyanin E.K.,
Yang-Baxter equation and representation theory. I,
Lett. Math. Phys. 5 (1981), 393-403.
- Babujian H.M.,
Exact solution of the one-dimensional isotropic Heisenberg chain with arbitrary spins s,
Phys. Lett. A 90 (1982), 479-482.
- Babujian H.M.,
Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model,
Nuclear Phys. B 215 (1983), 317-336.
- Sogo K., Akutsu Y., Abe T.,
New factorized S-matrix and its application to exactly solvable q-state model. I,
Progr. Theoret. Phys. 70 (1983), 730-738.
Sogo K., Akutsu Y., Abe T.,
New factorized S-matrix and its application to exactly solvable q-state model. II,
Progr. Theoret. Phys. 70 (1983), 739-746.
- Babujian H.M., Tsvelick A.M.,
Heisenberg magnet with an arbitrary spin and anisotropic chiral field,
Nuclear Phys. B 265 (1986), 24-44.
- Kirillov A.N., Reshetikhin N.Yu.,
Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum,
J. Phys. A: Math. Gen. 20 (1987), 1565-1585.
- Deguchi T., Wadati M., Akutsu Y.,
Exactly solvable models and new link polynomials. V. Yang-Baxter operator and braid-monoid algebra,
J. Phys. Soc. Japan 57 (1988), 1905-1923.
- Takhtajan L.A.,
The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins,
Phys. Lett. A 87 (1982), 479-482.
- Sogo K.,
Ground state and low-lying excitations in the Heisenberg XXZ chain of arbitrary spin S,
Phys. Lett. A 104 (1984), 51-54.
- Johannesson H.,
Central charge for the integrable higher-spin XXZ model,
J. Phys. A: Math. Gen. 21 (1988), L611-L614.
- Johannesson H.,
Universality classes of critical antiferromagnets,
J. Phys. A: Math. Gen. 21 (1988), L1157-L1162.
- Alcaraz F.C., Martins M.J.,
Conformal invariance and critical exponents of the Takhtajan-Babujian models,
J. Phys. A: Math. Gen. 21 (1988), 4397-4413.
- Affleck I., Gepner D., Schultz H.J., Ziman T.,
Critical behavior of spin-s Heisenberg antiferromagnetic chains: analytic and numerical results,
J. Phys. A: Math. Gen. 22 (1989), 511-529.
- Dörfel B.-D.,
Finite-size corrections for spin-S Heisenberg chains and conformal properties,
J. Phys. A: Math. Gen. 22 (1989), L657-L662.
- Avdeev L.V.,
The lowest excitations in the spin-s XXX magnet and conformal invariance,
J. Phys. A: Math. Gen. 23 (1990), L485-L492.
- Alcaraz F.C., Martins M.J.,
Conformal invariance and the operator content of the XXZ model with arbitrary spin,
J. Phys. A: Math. Gen. 22 (1989), 1829-1858.
- Frahm H., Yu N.-C., Fowler M.,
The integrable XXZ Heisenberg model with arbitrary spin: construction of the Hamiltonian, the ground-state configuration and conformal properties,
Nuclear Phys. B 336 (1990), 396-434.
- Frahm H., Yu N.-C.,
Finite-size effects in the XXZ Heisenberg model with arbitrary spin,
J. Phys. A: Math. Gen. 23 (1990), 2115-2132.
- de Vega H.J., Woynarovich F.,
Solution of the Bethe ansatz equations with complex roots for finite size: the spin S≥1 isotropic and anisotropic chains,
J. Phys. A: Math. Gen. 23 (1990), 1613-1626.
- Klümper A., Batchelor M.T.,
An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic XXZ chain,
J. Phys. A: Math. Gen. 23 (1990) L189-L195.
- Klümper A., Batchelor M.T., Pearce P.A.,
Central charge of the 6- and 19-vertex models with twisted boundary conditions,
J. Phys. A: Math. Gen. 24 (1991), 3111-3133.
- Suzuki J.,
Spinons in magnetic chains of arbitrary spins at finite temperatures,
J. Phys. A: Math. Gen. 32 (1999), 2341-2359,
cond-mat/9807076.
- Idzumi M., Calculation of correlation functions of the spin-1 XXZ model by vertex operators,
PhD Thesis, University of Tokyo, 1993.
- Idzumi M., Correlation functions of the spin 1 analog of the XXZ model,
hep-th/9307129.
- Idzumi M.,
Level two irreducible representations of Uq(^sl2), vertex operators, and their correlations,
Internat. J. Modern Phys. A 9 (1994), 4449-4484,
hep-th/9310089.
- Konno H.,
Free-field representation of the quantum affine algebra Uq(^sl2) and form factors in the higher-spin XXZ model,
Nuclear Phys. B 432 (1994), 457-486,
hep-th/9407122.
- Kojima T., Konno H., Weston R.,
The vertex-face correspondence and correlation functions of the eight-vertex model. I. The general formalism,
Nuclear Phys. B 720 (2005), 348-398,
math.QA/0504433.
- Deguchi T., Matsui C.,
On the evaluation of form factors and correlation functions for the integrable spin-s XXZ chains via the fusion method,
arXiv:1103.4206.
Deguchi T., Matsui C.,
Erratum to "Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry"
(Nuclear Phys. B 814 (2009), 405-438), Nuclear Phys. B, to appear.
- Deguchi T.,
Reduction formula of form factors for the integrable spin-s XXZ chains and application to the correlation functions,
arXiv:1105.4722.
- Boos H.E., Korepin V.E.,
Evaluation of integrals representing correlators in XXX Heisenberg spin chain, in MathPhys Odyssey 2001,
Prog. Math. Phys., Vol. 23, Birkhäuser Boston, Boston, MA, 2002, 65-108,
hep-th/0105144.
- Takahashi M.,
Half-filled Hubbard model at low temperature,
J. Phys. C: Solid State Phys. 10 (1977), 1289-1293.
- Sakai K., Shiroishi M., Nishiyama Y., Takahashi M.,
Third-neighbor correlators of a one-dimensional spin-1/2 Heisenberg antiferromagnet,
Phys. Rev. E 67 (2003), 065101, 4 pages,
cond-mat/0302564.
- Kato G., Shiroishi M., Takahashi M., Sakai K.,
Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at critical region,
J. Phys. A: Math. Gen. 36 (2003), L337-L344,
cond-mat/0304475.
- Takahashi M., Kato G., Shiroishi M.,
Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at massive region,
J. Phys. Soc. Japan 73 (2004), 245-253,
cond-mat/0308589.
- Kato G., Shiroishi M., Takahashi M., Sakai K.,
Third-neighbor and other four-point correlation functions of spin-1/2 XXZ chain,
J. Phys. A: Math. Gen. 37 (2004), 5097-5123,
cond-mat/0402625.
- Boos H.E., Korepin V.E., Smirnov F.A.,
Emptiness formation probability and quantum Knizhnik-Zamolodchikov equation,
Nuclear Phys. B 658 (2003), 417-439,
hep-th/0209246.
- Boos H.E., Shiroishi M., Takahashi M.,
First principle approach to correlation functions of spin-1/2 Heisenberg chain: fourth-neighbor correlators,
Nuclear Phys. B 712 (2005), 573-599,
hep-th/0410039.
- Sato J., Shiroishi M.,
Fifth-neighbor spin-spin correlator for the anti-ferromagnetic Heisenberg chain,
J. Phys. A: Math. Gen. 38 (2005), L405-L411,
hep-th/0504008.
- Sato J., Shiroishi M., Takahashi M.,
Correlation functions of the spin-1/2 anti-ferromagnetic Heisenberg chain: exact calculation via the generating function,
Nuclear Phys. B 729 (2005), 441-466,
hep-th/0507290.
- Sato J., Shiroishi M., Takahashi M.,
Exact evaluation of density matrix elements for the Heisenberg chain,
J. Stat. Mech. Theory Exp. 2006 (2006), P12017, 27 pages,
hep-th/0611057.
- Razumov A.V., Stroganov Yu.G.,
Spin chains and combinatorics,
J. Phys. A: Math. Gen. 34 (2001), 3185-3190,
cond-mat/0012141.
- Kitanine N., Maillet J.M., Slavnov N.A., Terras V.,
Emptiness formation probability of the XXZ spin-1/2 Heisenberg chain at Δ=1/2,
J. Phys. A: Math. Gen. 35 (2002), L385-L391,
hep-th/0201134.
- Kitanine N., Maillet J.M., Slavnov N.A., Terras V.,
Exact results for the σz two-point function of the XXZ chain at Δ=1/2,
J. Stat. Mech. Theory Exp. 2005 (2005), L09002, 7 pages,
hep-th/0506114.
- Sato J., Shiroishi M.,
Density matrix elements and entanglement entropy for the spin-1/2 XXZ chain at Δ=1/2,
J. Phys. A: Math. Theor. 40 (2007), 8739-8749,
arXiv:0704.0850.
- Jimbo M.,
A q-difference analogue of U(g) and the Yang-Baxter equation,
Lett. Math. Phys. 10 (1985), 63-69.
- Jimbo M.,
A q-analogue of U(gl(N+1)), Hecke algebra and the Yang-Baxter equation,
Lett. Math. Phys. 11 (1986), 247-252.
- Drinfel'd V.G., Quantum groups,
in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986),
Amer. Math. Soc., Providence, RI, 1987, 798-820.
- Göhmann F., Korepin V.E.,
Solution of the quantum inverse problem,
J. Phys. A: Math. Gen. 33 (2000), 1199-1220,
hep-th/9910253.
|
|