|
SIGMA 7 (2011), 046, 11 pages arXiv:1105.1583
https://doi.org/10.3842/SIGMA.2011.046
Contribution to the Proceedings of the Conference “Integrable Systems and Geometry”
Rational Solutions of the H3 and Q1 Models in the ABS Lattice List
Ying Shi and Da-jun Zhang
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
Received January 31, 2011, in final form May 04, 2011; Published online May 09, 2011
Abstract
In the paper we present rational solutions for the H3 and Q1 models in the Adler-Bobenko-Suris lattice list.
These solutions are in Casoratian form and are generated by considering difference equation sets satisfied by
the basic Casoratian column vector.
Key words:
Casoratian; bilinear; rational solutions; H3; Q1.
pdf (347 kb)
tex (13 kb)
References
- Nijhoff F.W., Walker A.J.,
The discrete and continuous Painlevé VI hierarchy and the Garnier systems,
Glasgow Math. J. 43A (2001), 109-123,
nlin.SI/0001054.
- Adler V.E., Bobenko A.I., Suris Yu.B.,
Classification of integrable equations on quad-graphs. The consistency approach,
Comm. Math. Phys. 233 (2003), 513-543,
nlin.SI/0202024.
- Atkinson J., Hietarinta J., Nijhoff F.,
Seed and soliton solutions of Adler's lattice equation,
J. Phys. A: Math. Theor. 40 (2007), F1-F8,
nlin.SI/0609044.
- Atkinson J., Hietarinta J., Nijhoff F.,
Soliton solutions for Q3,
J. Phys. A: Math. Theor. 41 (2008), 142001, 11 pages,
arXiv:0801.0806.
- Nijhoff F., Atkinson J., Hietarinta J.,
Soliton solutions for ABS lattice equations. I. Cauchy matrix approach,
J. Phys. A: Math. Theor. 42 (2009), 404005, 34 pages,
arXiv:0902.4873.
- Hietarinta J., Zhang D.J.,
Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization,
J. Phys. A: Math. Theor. 42 (2009), 404006, 30 pages,
arXiv:0903.1717.
- Hietarinta J., Zhang D.J.,
Multisoliton solutions to the lattice Boussinesq equation,
J. Math. Phys. 51 (2010), 033505, 12 pages,
arXiv:0906.3955.
- Atkinson J., Nijhoff F.,
A constructive approach to the soliton solutions of integrable quadrilateral lattice equations,
Comm. Math. Phys. 299 (2010), 283-304,
arXiv:0911.0458.
- Nijhoff F., Atkinson J.,
Elliptic N-soliton solutions of ABS lattice equations,
Int. Math. Res. Not. 2010 (2010), no. 20, 3837-3895,
arXiv:0911.0461.
- Ablowitz M.J., Satsuma J.,
Solitons and rational solutions of nonlinear evolution equations,
J. Math. Phys. 19 (1978), 2180-2186.
- Zhang D.J.,
Notes on solutions in Wronskian form to soliton equations: KdV-type,
nlin.SI/0603008.
- Zhang D.J., Hietarinta J.,
Generalized solutions for the H1 model in ABS list of lattice equations,
in Nonlinear and Modern Mathematical Physics (July 15-21, 2009, Beijing), Editors W.X. Ma, X.B. Hu and Q.P. Liu,
AIP Conf. Proc., Vol. 1212, Amer. Inst. Phys., Melville, NY, 2010, 154-161.
- Freeman N.C., Nimmo J.J.C.,
Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique,
Phys. Lett. A 95 (1983), 1-3.
|
|