|
SIGMA 7 (2011), 045, 22 pages arXiv:1010.3036
https://doi.org/10.3842/SIGMA.2011.045
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
Christopher M. Ormerod
La Trobe University, Department of Mathematics and Statistics, Bundoora VIC 3086, Australia
Received November 26, 2010, in final form May 03, 2011; Published online May 07, 2011
Abstract
We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.
Key words:
q-Painlevé; Lax pairs; q-Schlesinger transformations; connection; isomonodromy.
pdf (428 Kb)
tex (70 Kb)
References
- Adams R.C.,
On the linear ordinary q-difference equation,
Ann. of Math. 30 (1928), 195-205.
- Bellon M.P., Viallet C.-M.,
Algebraic entropy,
Comm. Math. Phys. 204 (1999), 425-437,
chao-dyn/9805006.
- Birkhoff G.D.,
General theory of linear difference equations,
Trans. Amer. Math. Soc. 12 (1911), 243-284.
- Birkhoff G.D.,
The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations,
Proc. Amer. Acad. 49 (1913), 512-568.
- Birkhoff G.D., Guenther P.E.,
Note on a canonical form for the linear q-difference system,
Proc. Nat. Acad. Sci. USA 27 (1941), 218-222.
- Carmichael R.D.,
The general theory of linear q-difference equations,
Amer. J. Math. 34 (1912), 147-168.
- Di Vizio L., Ramis J.-P., Sauloy J., Zhang C.,
Équations aux q-différences,
Gaz. Math. 96 (2003), 20-49.
- Fuchs R.,
Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen,
Math. Ann. 63 (1907), 301-321.
- Fuchs R.,
Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen,
Math. Ann. 70 (1911), 525-549.
- Gasper G., Rahman M.,
Basic hypergeometric series,
Encyclopedia of Mathematics and its Applications, Vol. 35,
Cambridge University Press, Cambridge, 1990.
- Jimbo M., Miwa T.,
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II,
Phys. D 2 (1981), 407-448.
- Jimbo M., Miwa T.,
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III,
Phys. D 4 (1981), 26-46.
- Jimbo M., Miwa T., Ueno K.,
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function,
Phys. D 2 (1981), 306-352.
- Jimbo M., Sakai H.,
A q-analog of the sixth Painlevé equation,
Lett. Math. Phys. 38 (1996), 145-154,
chao-dyn/9507010.
- Joshi N., Burtonclay D., Halburd R.G.,
Nonlinear nonautonomous discrete dynamical systems from a general discrete isomonodromy problem,
Lett. Math. Phys. 26 (1992), 123-131.
- Le Caine J.,
The linear q-difference equation of the second order,
Amer. J. Math. 65 (1943), 585-600.
- Murata M.,
Lax forms of the q-Painlevé equations,
J. Phys. A: Math. Theor. 42 (2009), 115201, 17 pages,
arXiv:0810.0058.
- Noumi M.,
An introduction to birational Weyl group actions,
in Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., Vol. 74,
Kluwer Acad. Publ., Dordrecht, 2002, 179-222.
- Noumi M., Yamada Y.,
A new Lax pair for the sixth Painlevé equation associated with ^so(8),
in Microlocal Analysis and Complex Fourier Analysis,
World Sci. Publ., River Edge, NJ, 2002, 238-252,
math-ph/0203029.
- Ormerod C.M.,
A study of the associated linear problem for q-PV,
arXiv:0911.5552.
- Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A.,
Isomonodromic deformation problems for discrete analogues of Painlevé equations,
Phys. Lett. A 164 (1992), 57-64.
- Ramani A., Grammaticos B., Hietarinta J.,
Discrete versions of the Painlevé equations,
Phys. Rev. Lett. 67 (1991), 1829-1832.
- Sakai H.,
Rational surfaces associated with affine root systems and geometry of the Painlevé equations,
Comm. Math. Phys. 220 (2001), 165-229.
- Sakai H.,
A q-analog of the Garnier system,
Funkcial. Ekvac. 48 (2005), 273-297.
- Sakai H.,
Lax form of the q-Painlevé equation associated with the A2(1) surface,
J. Phys. A: Math. Gen. 39 (2006), 12203-12210.
- Sauloy J.,
Galois theory of Fuchsian q-difference equations,
Ann. Sci. École Norm. Sup. (4) 36 (2003), 925-968,
math.QA/0210221.
- Shioda T., Takano K.,
On some Hamiltonian structures of Painlevé systems. I,
Funkcial. Ekvac. 40 (1997), 271-291.
- Trjitzinsky W.J.,
Analytic theory of linear q-difference equations,
Acta Math. 61 (1933), 1-38.
- van der Put M., Reversat M.,
Galois theory of q-difference equations,
Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), 665-718,
math.QA/0507098.
- van der Put M., Singer M.F.,
Galois theory of difference equations, Lecture Notes in Mathematics, Vol. 1666,
Springer-Verlag, Berlin, 1997.
- Yamada Y.,
Lax formalism for q-Painlevé equations with affine Weyl group symmetry of type En(1),
Int. Math. Res. Not., to appear,
arXiv:1004.1687.
- Yamada Y.,
A Lax formalism for the elliptic difference Painlevé equation,
SIGMA 5 (2009), 042, 15 pages,
arXiv:0811.1796.
|
|