|
SIGMA 7 (2011), 042, 20 pages arXiv:1011.6056
https://doi.org/10.3842/SIGMA.2011.042
Contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design”
Potentials Unbounded Below
Thomas Curtright a, b
a) CERN, CH-1211 Geneva 23, Switzerland
b) Department of Physics, University of Miami, Coral Gables, FL 33124-8046, USA
Received December 21, 2010, in final form March 27, 2011; Published online April 26, 2011
Abstract
Continuous interpolates are described for classical dynamical systems defined
by discrete time-steps. Functional conjugation methods play a central role
in obtaining the interpolations. The interpolates correspond to particle
motion in an underlying potential, V. Typically, V has no lower bound
and can exhibit switchbacks wherein V changes form when turning points are
encountered by the particle. The Beverton-Holt and Skellam models of
population dynamics, and particular cases of the logistic map are used to
illustrate these features.
Key words:
classical dynamical systems; functional conjugation methods; Beverton-Holt model; Skellam model.
pdf (626 kb)
tex (495 kb)
References
- Beverton R.J.H., Holt S.J.,
On the dynamics of exploited fish populations,
Fishery Investigations Series II, Vol. XIX, Ministry of Agriculture, Fisheries and Food, 1957.
- Collet P., Eckmann J.-P.,
Iterated maps on the interval as dynamical systems,
Progress in Physics, Vol. 1, Birkhäuser, Boston, Mass., 1980.
- Curtright T., Veitia A.,
Logistic map potentials,
Phys. Lett. A 375 (2011), 276-282,
arXiv:1005.5030.
- Curtright T., Zachos C.,
Evolution profiles and functional equations,
J. Phys. A: Math. Theor. 42 (2009), 485208, 16 pages,
arXiv:0909.2424.
- Curtright T., Zachos C.,
Chaotic maps, hamiltonian flows and holographic methods,
J. Phys. A: Math. Theor. 43 (2010), 445101, 15 pages,
arXiv:1002.0104.
- Curtright T., Zachos C.,
Renormalization group functional equations,
Phys. Rev. D 83 (2011), 065019, 17 pages,
arXiv:1010.5174.
- Devaney R.L.,
An introduction to chaotic dynamical systems, 2nd ed.,
Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.
- Erdös P., Jabotinsky E.,
On analytic iteration,
J. Analyse Math. 8 (1960), 361-376.
- Feigenbaum M.J.,
Quantitative universality for a class of nonlinear transformations,
J. Statist. Phys. 19 (1978), 25-52.
- Geritz S.A.H., Kisdi E.,
On the mechanistic underpinning of discrete-time population models with complex dynamics,
J. Theor. Biology 228 (2004), 261-269.
- Goldstone J.,
Field theories with "superconductor" solutions,
Nuovo Cimento 19 (1961), 154-164.
- Julia G.,
Mémoire sur l'itération des fonctions rationnelles,
Journ. de Math. (8) 1 (1918), 47-245.
- Kuczma M., Choczewski B., Ger R.,
Iterative functional equations, Encyclopedia of Mathematics and its Applications, Vol. 32,
Cambridge University Press, Cambridge, 1990.
- Nambu Y.,
Quasi-particles and gauge invariance in the theory of superconductivity,
Phys. Rev. 117 (1960), 648-663.
- Patrascioiu A.,
Classical Euclidean solutions,
Phys. Rev. D 15 (1977), 3051-3053.
- Poincaré H.,
Sur une classe étendue de transcendantes uniformes,
C.R. Acad. Sci. Paris 103 (1886), 862-864.
- Schröder E.,
Über iterierte Funktionen,
Math. Ann. 3 (1870), 296-322.
- Skellam J.G.,
Random dispersal in theoretical populations,
Biometrika 38 (1951), 196-218.
|
|