|
SIGMA 7 (2011), 014, 12 pages arXiv:1001.3436
https://doi.org/10.3842/SIGMA.2011.014
Schrödinger-like Dilaton Gravity
Yu Nakayama a, b
a) Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA
b) Institute for the Physics and Mathematics of the Universe,
University of Tokyo, Kashiwa, Chiba 277-8582, Japan
Received September 16, 2010, in final form February 02, 2011; Published online February 08, 2011
Abstract
We investigate possibilities for a Schrödinger-like gravity with the dynamical critical exponent z=2, where the action only contains the first-order time derivative. The Horava gravity always admits such a relevant deformation because the full (d+1) dimensional diffeomorphism of the Einstein gravity is replaced by the foliation preserving diffeomorphism. The dynamics is locally trivial or topological in the pure gravity case, but we can construct a dynamical field theory with a z=2 dispersion relation by introducing a dilaton degree of freedom. Our model provides a classical starting point for the possible quantum dilaton gravity which may be applied to a membrane quantization.
Key words:
non-relativistic gravity; membrane quantization.
pdf (288 Kb)
tex (15 Kb)
References
- Horava P.,
Membranes at quantum criticality,
J. High Energy Phys. 2009 (2009), no. 3, 020, 34 pages,
arXiv:0812.4287.
- Horava P.,
Quantum gravity at a Lifshitz point,
Phys. Rev. D 79 (2009), 084008, 15 pages,
arXiv:0901.3775.
- Horava P.,
Spectral dimension of the Universe in quantum gravity at a Lifshitz point,
Phys. Rev. Lett. 102 (2009), 161301, 4 pages,
arXiv:0902.3657.
- Hagen C.R.,
Scale and conformal transformations in Galilean-covariant field theory,
Phys. Rev. D 5 (1972), 377-388.
- Niederer U.,
The maximal kinematical invariance group of the free Schrödinger equation,
Helv. Phys. Acta 45 (1972), 802-810.
- Li M., Pang Y.,
A trouble with Horava-Lifshitz gravity,
J. High Energy Phys. 2009 (2009), no. 8, 015, 12 pages,
arXiv:0905.2751.
- Mukohyama S.,
Dark matter as integration constant in Horava-Lifshitz gravity,
Phys. Rev. D 80 (2009), 064005, 6 pages,
arXiv:0905.3563.
- Blas D., Pujolas O., Sibiryakov S.,
On the extra mode and inconsistency of Horava gravity,
J. High Energy Phys. 2009 (2009), no. 10, 029, 29 pages,
arXiv:0906.3046.
- Henneaux M., Kleinschmidt A., Gomez G.L.,
A dynamical inconsistency of Horava gravity,
Phys. Rev. D 81 (2010), 064002, 11 pages,
arXiv:0912.0399.
- Charmousis C., Niz G., Padilla A., Saffin P.M.,
Strong coupling in Horava gravity,
J. High Energy Phys. 2009 (2009), no. 8, 070, 17 pages,
arXiv:0905.2579.
- Nakayama Y.,
Liouville field theory: a decade after the revolution,
Internat. J. Modern Phys. A 19 (2004), 2771-2930,
hep-th/0402009.
- Jackiw R., Pi S.Y.,
Classical and quantal nonrelativistic Chern-Simons theory,
Phys. Rev. D 42 (1990), 3500-3513,
Erratum, Phys. Rev. D 48 (1993), 3929-3929.
- Nakayama Y., Sakaguchi M., Yoshida K.,
Non-relativistic M2-brane gauge theory and new superconformal algebra,
J. High Energy Phys. 2009 (2009), no. 4, 096, 21 pages,
arXiv:0902.2204.
- Lee K.-M., Lee S., Lee S.,
Non-relativistic superconformal M2-brane theory,
J. High Energy Phys. 2009 (2009), no. 9, 030, 32 pages,
arXiv:0902.3857.
- Nakayama Y., Rey S.-J.,
Observables and correlators in non-relativistic ABJM theory,
J. High Energy Phys. 2009 (2009), no. 8, 029, 28 pages,
arXiv:0905.2940.
|
|