|
SIGMA 7 (2011), 008, 16 pages arXiv:1010.4382
https://doi.org/10.3842/SIGMA.2011.008
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems”
A Vertex Operator Approach for Form Factors of Belavin's (Z/nZ)-Symmetric Model and Its Application
Yas-Hiro Quano
Department of Clinical Engineering, Suzuka University of Medical Science, Kishioka-cho, Suzuka 510-0293, Japan
Received October 22, 2010, in final form January 07, 2011; Published online January 15, 2011
Abstract
A vertex operator approach for form factors of
Belavin's (Z/nZ)-symmetric model is constructed
on the basis of bosonization of vertex operators
in the An−1(1) model and vertex-face transformation.
As simple application for n=2, we obtain expressions for
2m-point form factors related to
the σz and σx operators in
the eight-vertex model.
Key words:
vertex operator approach; form factors; Belavin's (Z/nZ)-symmetric model; integral formulae.
pdf (480 kb)
tex (15 kb)
References
- Quano Y.-H.,
A vertex operator approach for correlation functions of Belavin's (Z/nZ)-symmetric model,
J. Phys. A: Math. Theor. 42 (2009), 165211, 20 pages,
arXiv:0810.4220.
- Quano Y.-H.,
A vertex operator approach for form factors of Belavin's (Z/nZ)-symmetric model,
J. Phys. A: Math. Theor. 43 (2010), 085202, 23 pages,
arXiv:0912.1149.
- Belavin A.A.,
Dynamical symmetry of integrable quantum systems,
Nuclear Phys. B 180 (1981), 189-200.
- Richey M.P., Tracy C.A.,
Zn Baxter model: symmetries and the Belavin parametrization,
J. Statist. Phys. 42 (1986), 311-348.
- Jimbo M., Miwa T.,
Algebraic analysis of solvable lattice models,
CBMS Regional Conferences Series in Mathematics, Vol. 85,
American Mathematical Society, Providence, RI, 1995.
- Baxter R.J.,
Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
- Lashkevich M., Pugai L.,
Free field construction for correlation functions of the eight vertex model,
Nuclear Phys. B 516 (1998), 623-651,
hep-th/9710099.
- Lashkevich M.,
Free field construction for the eight-vertex model: representation for form factors,
Nuclear Phys. B 621 (2002), 587-621,
hep-th/0103144.
- Lukyanov S., Pugai Ya.,
Multi-point local height probabilities in the integrable RSOS model,
Nuclear Phys. B 473 (1996), 631-658,
hep-th/9602074.
- Kojima T., Konno H., Weston R.,
The vertex-face correspondence and correlation functions of the fusion eight-vertex model. I. The general formalism,
Nuclear Phys. B 720 (2005), 348-398,
math.QA/0504433.
- Quano Y.-H.,
Spontaneous polarization of the Zn-Baxter model,
Modern Phys. Lett. A 8 (1993), 3363-3375,
hep-th/9308053.
- Kojima T., Konno H.,
The elliptic algebra Uq,p(^slN) and the Drinfeld realization of the elliptic quantum group Bq,λ(^slN),
Comm. Math. Phys. 239 (2003), 405-447,
math.QA/0210383.
- Kojima T., Konno H.,
The elliptic algebra Uq,p(^slN) and the deformation of the WN algebra,
J. Phys. A: Math. Gen. 37 (2004), 371-383,
math.QA/0307244.
- Jimbo M., Miwa T., Okado M.,
Local state probabilities of solvable lattice models: an An(1) family,
Nuclear Phys. B 300 (1988), 74-108.
- Asai Y., Jimbo M., Miwa T., Pugai Ya.,
Bosonization of vertex operators for the An−1(1) face model,
J. Phys. A: Math. Gen. 29 (1996), 6595-6616,
hep-th/9606095.
- Furutsu H., Kojima T., Quano Y.-H.,
Type II vertex operators for the An−1(1)-face model,
Internat. J. Modern Phys. A 15 (2000), 1533-1556,
solv-int/9908009.
- Feigin B.L., Frenkel E.V.,
Quantum W-algebras and elliptic algebras,
Comm. Math. Phys. 178 (1996), 653-678,
q-alg/9508009.
- Awata H., Kubo H., Odake S., Shiraishi J.,
Quantum WN algebras and Macdonald polynomials,
Comm. Math. Phys. 179 (1996), 401-416,
q-alg/9508011.
- Fan H., Hou B-Y., Shi K-J., Yang W-L.,
Bosonization of vertex operators for the Zn-symmetric Belavin model,
J. Phys. A: Math. Gen. 30 (1997), 5687-5696,
hep-th/9703126.
- Lukyanov S., Terras V.,
Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain,
Nuclear Phys. B 654 (2003), 323-356,
hep-th/0206093.
- Smirnov F.A.,
Form factors in completely integrable models of quantum field theory,
Advanced Series in Mathematical Physics, Vol. 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
|
|