|
SIGMA 6 (2010), 074, 19 pages arXiv:1009.4762
https://doi.org/10.3842/SIGMA.2010.074
Contribution to the Special Issue “Noncommutative Spaces and Fields”
Snyder Space-Time: K-Loop and Lie Triple System
Florian Girelli
School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
Received April 29, 2010, in final form September 13, 2010; Published online September 24, 2010
Abstract
Different deformations
of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal).
We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key objects in the construction.
Key words:
Snyder space-time; quantum group.
pdf (315 kb)
ps (202 kb)
tex (24 kb)
References
- Snyder H.,
Quantized space-time,
Phys. Rev. 71 (1947), 38-41.
- Breckenridge J.C., Elias V., Steele T.G.,
Massless scalar field theory in a quantised spacetime,
Classical Quantum Gravity 12 (1995), 637-650,
hep-th/9501108.
- Girelli F., Livine E.R.,
Field theories with homogenous momentum space,
in Proceedings of 25th Max Born Symposium: The Planck Scale (Wroclaw, Poland, 2009),
AIP Conf. Proc. 1196, (2009), 115-123,
arXiv:0910.3107.
- Girelli F., Livine E.R.,
Scalar field theory in Snyder space-time: alternatives,
arXiv:1004.0621.
- Battisti M.V., Meljanac S.,
Scalar field theory on non-commutative Snyder space-time,
Phys. Rev. D 82 (2010), 024028, 9 pages,
arXiv:1003.2108.
Meljanac S., Meljanac D., Samsarov A., Stojic M.,
κ-deformed Snyder spacetime,
Modern Phys. Lett. A 25 (2010), 579-590,
arXiv:0912.5087.
Battisti M.V., Meljanac S.,
Modification of Heisenberg uncertainty relations in non-commutative Snyder space-time geometry,
Phys. Rev. D 79 (2009), 067505, 4 pages,
arXiv:0812.3755.
- Zakrzewski S.,
Poisson structures on the Poincaré group,
Comm. Math. Phys. 185 (1997), 285-311,
q-alg/9602001.
- Lukierski J., Ruegg H., Nowicki A., Tolstoi V.N.,
q-deformation of Poincaré algebra,
Phys. Lett. B 264 (1991), 331-338.
- Majid S., Ruegg H.,
Bicrossproduct structure of κ-Poincaré group and noncommutative geometry,
Phys. Lett. B 334 (1994), 348-354,
hep-th/9405107.
- Majid S.,
Foundations of quantum group theory,
Cambridge University Press, Cambridge, 1995.
- Kowalski-Glikman J., Nowak S.,
Quantum κ-Poincaré algebra from de Sitter space of momenta,
hep-th/0411154.
- Freidel L., Kowalski-Glikman J., Nowak S.,
Field theory on κ-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry,
Internat. J. Modern Phys. A 23 (2008), 2687-2718,
arXiv:0706.3658.
- Kiechle H.,
Theory of K-loops,
Lecture Notes in Mathematics, Vol. 1778, Springer-Verlag, Berlin, 2002.
- Joung E., Mourad J., Noui K.,
Three dimensional quantum geometry and deformed symmetry,
J. Math. Phys. 50 (2009), 052503, 29 pages,
arXiv:0806.4121.
- Sabinin L.V.,
Smooth quasigroups and loops,
Mathematics and Its Applications, Vol. 492, Kluwer Academic Publishers, Dordrecht, 1999.
- Klim J., Majid S.,
Hopf quasigroups and the algebraic 7-sphere,
J. Algebra 323 (2010), 3067-3110,
arXiv:0906.5026.
Klim J., Majid S.,
Bicrossproduct Hopf quasigroups,
arXiv:0911.3114.
- Kikkawa M.,
Geometry of homogeneous Lie loops,
Hiroshima Math. J. 5 (1975), 141-179.
- Ungar A.A.,
Thomas precession and its associated grouplike structure,
Amer. J. Phys. 59 (1991), 824-834.
- Sabinin L.V., Sabinina L.L., Sbitneva L.V.,
On the notion of gyrogroup,
Aequationes Math. 56 (1998), 11-17.
- Girelli F., Livine E.R.,
Special relativity as a noncommutative geometry: lessons for deformed special relativity,
Phys. Rev. D 81 (2010), 085041, 17 pages,
gr-qc/0407098.
- Mostovoy J., Perez-Izquierdo J.M.,
Ideals in non-associative universal enveloping algebras of Lie triple systems,
math/0506179.
Perez-Izquierdo J.M.,
Algebras, hyperalgebras, nonassociative bialgebras and loops,
Adv. Math. 208 (2007), 834-876.
- Nagy G.P.,
The Campbell-Hausdorff series of local analytic Bruck loops,
Abh. Math. Sem. Univ. Hamburg 72 (2002), 79-87.
- Jacobson N.,
General representation theory of Jordan algebras,
Trans. Amer. Math. Soc. 70 (1951), 509-530.
- Hodge T.L., Parshall B.J.,
On the representation theory of Lie triple systems,
Trans. Amer. Math. Soc. 354 (2002), 4359-4391.
- Lister W.G.,
A structure theory of Lie triple systems,
Trans. Amer. Math. Soc. 72 (1952), 217-242.
- Doplicher S., Fredenhagen K., Roberts J.E.,
The quantum structure of spacetime at the Planck scale and quantum fields,
Comm. Math. Phys. 172 (1995), 187-220,
hep-th/0303037.
- Carlson C.E., Carone C.D., Zobin N.,
Noncommutative gauge theory without Lorentz violation,
Phys. Rev. D 66 (2002), 075001, 8 pages,
hep-th/0206035.
- Sitarz A.,
Noncommutative differential calculus on the κ-Minkowski space,
Phys. Lett. B 349 (1995), 42-48,
hep-th/9409014.
- Girelli F., Livine E.R.,
Physics of deformed special relativity,
gr-qc/0412079.
Girelli F., Livine E.R.,
Physics of deformed special relativity: relativity principle revisited,
Braz. J. Phys. 35 (2005), 432-438,
gr-qc/0412004.
Andriot D., Lorentz precession in deformed special relativity, unpublished work.
|
|