|
SIGMA 6 (2010), 028, 11 pages arXiv:0911.2684
https://doi.org/10.3842/SIGMA.2010.028
Contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems”
Yang-Baxter Maps from the Discrete BKP Equation
Saburo Kakei a, Jonathan J.C. Nimmo b and Ralph Willox c
a) Department of Mathematics, College of Science, Rikkyo University,
3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
b) Department of Mathematics, University of Glasgow, Glasgow G12 8QQ, UK
c) Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
Received November 13, 2009, in final form March 19, 2010; Published online March 31, 2010
Abstract
We construct
rational and piecewise-linear Yang-Baxter maps for a general
N-reduction of the discrete BKP equation.
Key words:
Yang-Baxter map; discrete BKP equation.
pdf (254 kb)
ps (171 kb)
tex (14 kb)
References
- Adler V.E., Bobenko A.I., Suris Yu B.,
Classification of integrable equations on quad-graphs. The consistency approach,
Comm. Math. Phys. 233 (2003), 513-543,
nlin.SI/0202024.
- Date E., Jimbo M., Kashiwara M., Miwa T.,
Transformation groups for soliton equations.
Euclidean Lie algebras and reduction of the KP hierarchy,
Publ. Res. Inst. Math. Sci. 18 (1982), 1077-1110.
- Date E., Jimbo M., Miwa T.,
Method for generating discrete soliton equations. II,
J. Phys. Soc. Japan 51 (1982), 4125-4131.
- Date E., Jimbo M., Miwa T.,
Method for generating discrete soliton equations. V,
J. Phys. Soc. Japan 52 (1983), 766-771.
- Etingof P.,
Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation,
Comm. Algebra 31 (2003), 1961-1973,
math.QA/0112278.
- Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T.,
The AM(1) automata related to crystals of symmetric tensors,
J. Math. Phys. 42 (2001), 274-308,
math.QA/9912209.
- Hatayama G., Kuniba A., Takagi T.,
Soliton cellular automata associated with crystal bases,
Nuclear Phys. B 577 (2000), 619-645,
solv-int/9907020.
- Hirota R.,
Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation,
J. Phys. Soc. Japan 43 (1977), 1424-1433.
- Hirota R.,
Discrete analogue of a generalized Toda equation,
J. Phys. Soc. Japan 50 (1981), 3785-3791.
- Hirota R.,
Ultradiscretization of the Sawada-Kotera equation,
in Mathematics and Physics in Nonlinear Waves (November 6-8, 2008, Fukuoka, Japan),
Reports of RIAM Symposium, Vol. 20ME-S7, Research Institute for Applied Mechanics, Kyushu University,
2009, 76-85 (in Japanese).
- Kakei S., Nimmo J.J.C., Willox R.,
Yang-Baxter maps and the discrete KP hierarchy,
Glasg. Math. J. 51 (2009), no. A, 107-119.
- Maillet J.M., Nijhoff F.W.,
Integrability for multidimensional lattice models,
Phys. Lett. B 224 (1989), 389-396.
- Miwa T.,
On Hirota's difference equations,
Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 9-12.
- Nimmo J.J.C.,
Darboux transformations and the discrete KP equation,
J. Phys. A: Math. Gen. 30 (1997), 8693-8704.
- Nimmo J.J.C.,
Darboux transformations for discrete systems,
Chaos Solitons Fractals 11 (2000), 115-120.
- Papageorgiou V.G., Suris Yu.B., Tongas A.G., Veselov A.P.,
On quadrirational Yang-Baxter maps,
arXiv:0911.2895.
- Papageorgiou V.G., Tongas A.G., Veselov A.P.,
Yang-Baxter maps and symmetries of integrable equations on quad-graphs,
J. Math. Phys. 47 (2006), 083502, 16 pages,
math.QA/0605206.
- Suris Yu.B., Veselov A.P.,
Lax matrices for Yang-Baxter maps,
J. Nonlinear Math. Phys. 10 (2003), suppl. 2, 223-230,
math.QA/0304122.
- Takagi T.,
Soliton cellular automata,
in Combinatorial Aspect of Integrable Systems,
MSJ Mem., Vol. 17, Math. Soc. Japan, Tokyo, 2007, 105-144.
- Takahashi D., Matsukidaira J.,
Box and ball system with a carrier and ultradiscrete modified KdV equation,
J. Phys. A: Math. Gen. 30 (1997), L733-L739.
- Takahashi D., Satsuma J.,
A soliton cellular automaton,
J. Phys. Soc. Japan 59 (1990), 3514-3519.
- Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J.,
From soliton equations to integrable cellular automata through a limiting procedure,
Phys. Rev. Lett. 76 (1996), 3247-3250.
- Veselov A.P.,
Yang-Baxter maps and integrable dynamics,
Phys. Lett. A 314 (2003), 214-221,
math.QA/0205335.
- Veselov A.P.,
Yang-Baxter maps: dynamical point of view,
in Combinatorial Aspect of Integrable Systems,
MSJ Mem., Vol. 17, Math. Soc. Japan, Tokyo, 2007, 145-167,
math.QA/0612814.
- Willox R., Tokihiro T., Satsuma J.,
Darboux and binary Darboux transformations for the nonautonomous discrete KP equation,
J. Math. Phys. 38 (1997), 6455-6469.
- Willox R., Tokihiro T., Satsuma J.,
Nonautonomous discrete integrable systems,
Chaos Solitons Fractals 11 (2000), 121-135.
|
|