|
SIGMA 6 (2010), 017, 22 pages arXiv:1002.1932
https://doi.org/10.3842/SIGMA.2010.017
Contribution to the Proceedings of the Eighth International Conference Symmetry in Nonlinear Mathematical Physics
Solitary Waves in Massive Nonlinear SN-Sigma Models
Alberto Alonso Izquierdo a, Miguel Ángel González León a and Marina de la Torre Mayado b
a) Departamento de Matemática Aplicada, Universidad de Salamanca, Spain
b) Departamento de Física Fundamental, Universidad de Salamanca, Spain
Received December 07, 2009; Published online February 09, 2010
Abstract
The solitary waves of massive (1+1)-dimensional
nonlinear SN-sigma models are unveiled. It is shown
that the solitary waves in these systems are in one-to-one correspondence with
the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem.
There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories)
kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the
direct estimation of the spectra of the second-order fluctuation
operators around them, whereas the instability of other topological and
non-topological kinks is established applying the Morse index
theorem.
Key words:
solitary waves; nonlinear sigma models.
pdf (858 kb)
ps (1607 kb)
tex (1887 kb)
References
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J.,
Kinks in a nonlinear massive sigma model,
Phys. Rev. Lett. 101 (2008), 131602, 4 pages,
arXiv:0808.3052.
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J.,
BPS and non-BPS kinks in a massive nonlinear S2-sigma model,
Phys. Rev. D 79 (2009), 125003, 16 pages,
arXiv:0903.0593.
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J., Senosiain M.J.,
On the semiclassical mass of S2-kinks,
J. Phys. A: Math. Theor. 42 (2009), 385403, 18 pages,
arXiv:0906.1258.
- Gell-Mann M., Lévy M.,
The axial vector current in beta decay,
Nuovo Cimento (10) 16 (1960), 705-726.
- Brézin E., Zinn-Justin J., Le Guillou J.C.,
Renormalization of the nonlinear σ-model in 2+ε dimensions,
Phys. Rev. D 14 (1976), 2615-2621.
- Woodford S.R., Barashenkov I.V.,
Stability of the Bloch wall via the Bogomolnyi decomposition in elliptic coordinates,
J. Phys. A: Math. Teor. 41 (2008), 185203, 11 pages,
arXiv:0803.2299.
- Barashenkov I.V., Woodford S.R., Zemlyanaya E.V.,
Interactions of parametrically driven dark solitons. I. Néel-Néel and Bloch-Bloch interactions,
Phys. Rev. E 75 (2007), 026604, 18 pages,
nlin.SI/0612059.
Barashenkov I.V., Woodford S.R.,
Interactions of parametrically driven dark solitons. II. Néel-Bloch interactions,
Phys. Rev. E 75 (2007), 026605, 14 pages,
nlin.SI/0701005.
- Barashenkov I.V., Woodford S.R., Zemlyanaya E.V.,
Parametrically driven dark solitons,
Phys. Rev. Lett. 90 (2003), 054103, 4 pages,
nlin.SI/0212052.
- Rajaraman R.,
Solitons and instantons. An introduction to solitons and instantons in quantum field theory, North-Holland Publishing Co., Amsterdam, 1982.
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J.,
Kink manifolds in (1+1)-dimensional scalar field theory,
J. Phys. A: Math. Gen. 31 (1998), 209-229.
- Alonso Izquierdo A., Mateos Guilarte J.,
Generalized MSTB models: structure and kink varietes,
Phys. D 237 (2008), 3263-3291,
arXiv:0802.0153.
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J.,
Kinks from dynamical systems: domain walls in a deformed linear O(N) sigma model,
Nonlinearity 13 (2000), 1137-1169,
hep-th/0003224.
- Neumann C.,
De problemate quodam mechanico, quod ad primam integralium ultraelipticorum classem revocatur,
J. Reine Angew. Math. 56 (1859), 46-63.
- Moser J.,
Various aspects of integrable Hamiltonian systems,
in Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., Vol. 8, Birkhäuser, Boston, 1980, 233-289.
- Dubrovin B.A.,
Theta functions and nonlinear equations,
Uspekhi Mat. Nauk 36 (1981), no. 2, 11-80.
- Alonso Izquierdo A., González León M.A., Mateos Guilarte J.,
Stability of kink defects in a deformed O(3) linear sigma model,
Nonlinearity 15 (2002), 1097-1125,
math-ph/0204041.
- Bogomolnyi E.B.,
The stability of classical solutions,
Soviet J. Nuclear Phys. 24 (1976), 449-454.
- Mumford D.,
Tata lectures on theta. II. Jacobian theta functions and differential equations,
Progr. Math., Vol. 43, Birkhäuser, Boston, 1984.
- Ito H., Tasaki H.,
Stability theory for nonlinear Klein-Gordon kinks and the Morse's index theorem,
Phys. Lett. A 113 (1985), 179-182.
|
|