|
SIGMA 6 (2010), 007, 7 pages arXiv:0811.3066
https://doi.org/10.3842/SIGMA.2010.007
Contribution to the Special Issue “Noncommutative Spaces and Fields”
Quantum Isometry Group for Spectral Triples with Real Structure
Debashish Goswami
Stat-Math Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
Received November 06, 2009, in final form January 17, 2010; Published online January 20, 2010
Abstract
Given a spectral triple of compact type with a real structure in the sense of
[Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein,
we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D.,
J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D.,
J. Funct. Anal. 257 (2009), 2530-2572].
Key words:
quantum isometry groups; spectral triples; real structures.
pdf (201 kb)
ps (148 kb)
tex (12 kb)
References
- Banica T.,
Quantum automorphism groups of small metric spaces,
Pacific J. Math. 219 (2005), 27-51,
math.QA/0304025.
- Banica T.,
Quantum automorphism groups of homogeneous graphs,
J. Funct. Anal. 224 (2005), 243-280,
math.QA/0311402.
- Bichon J.,
Quantum automorphism groups of finite graphs,
Proc. Amer. Math. Soc. 131 (2003), 665-673,
math.QA/9902029.
- Bhowmick J.,
Quantum isometry group of the n-tori,
Proc. Amer. Math. Soc. 137 (2009), 3155-3161,
arXiv:0803.4434.
- Bhowmick J., Goswami D.,
Quantum group of orientation-preserving Riemannian isometries,
J. Funct. Anal. 257 (2009), 2530-2572,
arXiv:0806.3687.
- Bhowmick J., Goswami D., Skalski A.,
Quantum isometry groups of 0-dimensional manifolds,
Trans. Amer. Math. Soc., to appear,
arXiv:0807.4288.
- Bhowmick J., Goswami D.,
Quantum isometry groups: examples and computations,
Comm. Math. Phys. 285 (2009), 421-444,
arXiv:0707.2648.
- Bhowmick J., Goswami D.,
Quantum isometry groups of the Podles sphere,
arXiv:0810.0658.
- Connes A.,
Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
- Dabrowski L.,
Geometry of quantum spheres,
J. Geom. Phys. 56 (2006), 86-107,
math.QA/0501240.
- Dabrowski L., Landi G., Paschke M., Sitarz A.,
The spectral geometry of the equatorial Podles sphere,
C. R. Math. Acad. Sci. Paris 340 (2005), 819-822,
math.QA/0408034.
- Dabrowski L., D'Andrea F., Landi G., Wagner E.,
Dirac operators on all Podles quantum spheres,
J. Noncommut. Geom. 1 (2007), 213-239,
math.QA/0606480.
- Goswami D.,
Quantum group of isometries in classical and noncommutative geometry,
Comm. Math. Phys. 285 (2009), 141-160,
arXiv:0704.0041.
- Maes A., Van Daele A.,
Notes on compact quantum groups,
Nieuw Arch. Wisk. (4) 16 (1998), 73-112,
math.FA/9803122.
- Varilly J.C.,
An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
- Wang S.,
Free products of compact quantum groups,
Comm. Math. Phys. 167 (1995), 671-692.
- Wang S.,
Quantum symmetry groups of finite spaces,
Comm. Math. Phys. 195 (1998), 195-211,
math.OA/9807091.
- Wang S.,
Structure and isomorphism classification of compact quantum groups Au(Q) and Bu(Q),
J. Operator Theory 48 (2002), 573-583,
math.OA/9807095.
- Wang S.,
Ergodic actions of universal quantum groups on operator algebras,
Comm. Math. Phys. 203 (1999), 481-498,
math.OA/9807093.
- Woronowicz S.L.,
Compact matrix pseudogroups,
Comm. Math. Phys. 111 (1987), 613-665.
- Woronowicz S.L.,
Compact quantum groups, in Symétries Quantiques
(Les Houches, 1995), Editors A. Connes et al., North-Holland, Amsterdam, 1998, 845-884.
|
|