|
SIGMA 6 (2010), 003, 9 pages arXiv:1001.1322
https://doi.org/10.3842/SIGMA.2010.003
Contribution to the Proceedings of the 5-th Microconference Analytic and Algebraic Methods V
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
Jan Paseka
Department of Mathematics
and Statistics,
Faculty of Science,
Masaryk University, Kotlárská 2,
CZ-611 37 Brno, Czech Republic
Received September 29, 2009, in final form January 07, 2010; Published online January 08, 2010
Abstract
Effect algebras are a generalization of many structures
which arise in quantum physics and in mathematical
economics. We show that, in every
modular Archimedean atomic lattice effect algebra E that is not
an orthomodular lattice there exists an (o)-continuous state ω on E,
which is subadditive. Moreover, we show properties of finite and
compact elements of such lattice effect algebras.
Key words:
effect algebra; state; modular lattice; finite element; compact element.
pdf (217 kb)
ps (150 kb)
tex (15 kb)
References
- Avallone A., Barbieri G., Vitolo P., Weber H.,
Decomposition of effect algebras and the Hammer-Sobczyk theorem,
Algebra Universalis 60 (2009), 1-18.
- Busch P., Grabowski M., Lahti P.J.,
Operational quantum physics, Lecture Notes in Physics. New Series m: Monographs, Vol. 31, Springer-Verlag, New York, 1995.
- Chajda I., Halas R., Kühr J.,
Many-valued quantum algebras,
Algebra Universalis 60 (2009), 63-90.
- Chang C.C.,
Algebraic analysis of many valued logics,
Trans. Amer. Math. Soc. 88 (1958), 467-490.
- Chovanec F., Kôpka F.,
Difference posets in the quantum structures background,
Internat. J. Theoret. Phys. 39 (2000), 571-583.
- Davey B.A., Priestley H.A.,
Introduction to lattices and order, 2nd ed.,
Cambridge University Press, New York, 2002.
- Dvurecenskij A., Pulmannová S.,
New trends in quantum structures, Mathematics and its Applications, Vol. 516, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000.
- Dvurecenskij A., Graziano M.G.,
An invitation to economical test spaces and effect algebras,
Soft Comput. 9 (2005), 463-470.
- Epstein L.G., Zhang J.,
Subjective probabilities on subjectively unambiguous events,
Econometrica 69 (2001), 265-306.
- Foulis D.J., Bennett M.K., Effect algebras and unsharp quantum logics,
Found. Phys. 24 (1994), 1331-1352.
- Foulis D.J.,
Effects, observables, states, and symmetries in physics,
Found. Phys. 37 (2007), 1421-1446.
- Greechie R.J., Foulis D.J., Pulmannová S.,
The center of an effect algebra,
Order 12 (1995), 91-106.
- Gudder S.P.,
Sharply dominating effect algebras,
Tatra Mt. Math. Publ. 15 (1998), 23-30.
- Gudder S.P.,
S-dominating effect algebras,
Internat. J. Theoret. Phys. 37 (1998), 915-923.
- Jacobson N.,
Lectures in abstract algebra, Vol. I, Basic concepts, D. Van Nostrand Co., Inc., Toronto - New York - London, 1951.
- Jenca G., Riecanová Z.,
On sharp elements in lattice ordered effect algebras,
BUSEFAL 80 (1999), 24-29.
- Kalmbach G.,
Orthomodular lattices, Mathematics and its Applications, Vol. 453, Kluwer Academic Publishers, Dordrecht, 1998.
- Kôpka F., D-posets of fuzzy sets,
Tatra Mt. Math. Publ. 1 (1992), 83-87.
- Kôpka F., Chovanec F.,
D-posets,
Math. Slovaca 44 (1994), 21-34.
- Kôpka F.,
Compatibility in D-posets,
Internat. J. Theoret. Phys. 34 (1995), 1525-1531.
- Paseka J., Riecanová Z.,
Compactly generated de Morgan lattices, basic algebras and effect algebras,
Internat. J. Theoret. Phys., to appear.
- Paseka J., Riecanová Z., Wu J.,
Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras, arXiv:0908.3288.
- Paseka J., Riecanová Z.,
The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states,
Soft Comput., to appear.
- Riecanová Z.,
Compatibility and central elements in effect algebras,
Tatra Mt. Math. Publ. 16 (1999), 151-158.
- Riecanová Z.,
Subalgebras, intervals and central elements of generalized effect algebras,
Internat. J. Theoret. Phys. 38 (1999), 3209-3220.
- Riecanová Z.,
Generalization of blocks for D-lattices and lattice-ordered effect algebras,
Internat. J. Theoret. Phys. 39 (2000), 231-237.
- Riecanová Z.,
Orthogonal sets in effect algebras,
Demonstratio Math. 34 (2001), 525-532.
- Riecanová Z.,
Proper effect algebras admitting no states,
Internat. J. Theoret. Phys. 40 (2001), 1683-1691.
- Riecanová Z.,
Lattice effect algebras with (o)-continuous faithful valuations,
Fuzzy Sets and Systems 124 (2001), no. 3, 321-327.
- Riecanová Z.,
Smearings of states defined on sharp elements onto effect algebras,
Internat. J. Theoret. Phys. 41 (2002), 1511-1524.
- Riecanová Z.,
Continuous lattice effect algebras admitting order-continuous states,
Fuzzy Sets and Systems 136 (2003), 41-54.
- Riecanová Z.,
Modular atomic effect algebras and the existence of subadditive states,
Kybernetika 40 (2004), 459-468.
- Riecanová Z., Paseka J.,
State smearing theorems and the existence of states on some atomic lattice effect algebras,
J. Logic Comput., to appear.
- Riecanová Z., Wu J.,
States on sharply dominating effect algebras,
Sci. China Ser. A 51 (2008), 907-914.
- Skornyakov L.A.,
Elements of lattice theory, 2nd ed., Nauka, Moscow, 1982
(English transl.: 1st ed., Hindustan, Delhi; Adam Hilger, Bristol, 1977).
- Sykes S.R.,
Finite modular effect algebras,
Adv. in Appl. Math. 19 (1997), 240-250.
|
|