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Abstract. Recently the study of Fay-type identities revealed some new features of the DKP
hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results
are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff–Toda
hierarchy”). Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the
case of the DKP hierarchy, building blocks of the auxiliary linear problem are difference
operators. A set of evolution equations for dressing operators of the wave functions are also
obtained. Secondly, a system of Fay-like identities (difference Fay identities) are derived.
They give a generating functional expression of auxiliary linear equations. Thirdly, these
difference Fay identities have well defined dispersionless limit (dispersionless Hirota equa-
tions). As in the case of the DKP hierarchy, an elliptic curve is hidden in these dispersionless
Hirota equations. This curve is a kind of spectral curve, whose defining equation is iden-
tified with the characteristic equation of a subset of all auxiliary linear equations. The other
auxiliary linear equations are related to quasi-classical deformations of this elliptic spectral
curve.
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1 Introduction

This paper is a sequel of the study on Fay-type identities of integrable hierarchies, in particular
the DKP hierarchy [1]. The DKP hierarchy is a variant of the KP hierarchy and obtained as
a subsystem of Jimbo and Miwa’s hierarchy of the D′

∞ type [2, 3]. The same hierarchy was
rediscovered later on as “the coupled KP hierarchy” [4] and “the Pfaff lattice” [5, 6, 7], and has
been studied from a variety of points of view [8, 9, 10, 11, 12, 13, 14, 15, 16]. The term “Pfaff”
stems from the fact that Pfaffians play a role in many aspects of this system. The previous
study [1] revealed some new features of this relatively less known integrable hierarchy. In this
paper, we extend those results to a Toda version of the DKP hierarchy.

The integrable hierarchy in question is a slight modification of the system proposed by Willox
[17, 18] as an extension of the Jimbo–Miwa D′

∞ hierarchy. We call this system, tentatively, “the
Pfaff–Toda hierarchy” (as an abbreviation of the “Pfaffian” or “Pfaffianized” Toda hierarchy).
Following the construction of Jimbo and Miwa, Willox started from a fermionic definition of the
tau function, and derived this hierarchy in a bilinear form. The lowest level of this hierarchy
contains a 2 + 2D (2 continuous and 2 discrete) extension

1
2
DxDyτ(s, r, x, y) · τ(s, r, x, y) + τ(s− 1, r, x, y)τ(s+ 1, r, x, y)

− τ(s, r − 1, x, y)τ(s, r + 1, x, y) = 0
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of the usual 2 + 1D Toda equation and an additional 2 + 2D equation

Dxτ(s, r, x, y) · τ(s+ 1, r − 1, x, y) +Dyτ(s, r − 1, x, y) · τ(s+ 1, r, x, y) = 0

(see the papers of Santini et al. [19], Hu et al. [20] and Gilson and Nimmo [21] for some other
sources of these equations). Willox further presented an auxiliary linear problem for these lowest
equations, but extending it to the full hierarchy was an open problem. We first address this
issue, then turn to issues of Fay-like identities and dispersionless limit.

As we show in this paper, the Pfaff–Toda hierarchy is indeed a mixture of the DKP and Toda
hierarchies. Firstly, we can formulate an auxiliary linear problem as a two-component system
like that of the DKP hierarchy [1], but building blocks therein are difference (rather than
differential) operators as used for the Toda hierarchy. Secondly, the differential Fay identities
of the DKP hierarchy are replaced by “difference Fay identities” analogous to those of the Toda
hierarchy [22, 23]. Lastly, those difference Fay identities have well defined dispersionless limit
to the so called “dispersionless Hirota equations”. These equations resemble the dispersionless
Hirota equations of the Toda hierarchy [22, 24, 25, 26], but exhibits a more complicated structure
parallel to the dispersionless Hirota equations of the DKP hierarchy [1].

Among these rich contents, a particularly remarkable outcome is the fact that an elliptic curve
is hidden in the dispersionless Hirota equations. A similar elliptic curve was also encountered
in the dispersionless Hirota equations of the DKP hierarchy [1], but its true meaning remained
to be clarified. This puzzle was partly resolved by Kodama and Pierce [27]. They interpreted
the curve as an analogue of the “spectral curve” of the dispersionless 1D Toda lattice. We
can now give a more definite answer to this issue. Namely, these curves are defined by the
characteristic equations of a subset of the full auxiliary linear equations, hence may be literally
interpreted as spectral curves. The other auxiliary linear equations are related to “quasi-classical
deformations” [28, 29] of these curves.

This paper is organized as follows. In Section 2, we formulate the Pfaff–Toda hierarchy as
a bilinear equation for the tau function. This bilinear equation is actually a generating functional
expression of an infinite number of Hirota equations. In Section 3, we present a full system of
auxiliary linear equations that contains Willox’s auxiliary linear equations. A system of evo-
lution equations for “dressing operators” of the wave functions are also obtained. The dressing
operators are difference operators in a direction (s-direction) of the 2D lattice; another direc-
tion (r-direction) plays the role of a discrete time variable. Section 4 deals with the difference
Fay identities. These Fay-like identities are derived from the bilinear equation of Section 2 by
specializing the values of free variables. We show that they are auxiliary linear equations in
disguise, namely, they give a generating functional expression of the auxiliary linear equations
of Section 3. Section 5 is devoted to the issues of dispersionless limit. The dispersionless Hirota
equations are derived from the differential Fay identities as a kind of “quasi-classical limit”. Af-
ter rewriting these dispsersionless Hirota equations, we find an elliptic curve hidden therein, and
identify a set of auxiliary linear equations for which the curve can be interpreted as a spectral
curve.

2 Bilinear equations

The Pfaff–Toda hierarchy has two discrete variables s, r ∈ Z and two sets of continuous variables
t = (t1, t2, . . .), t̄ = (t̄1, t̄2, . . .). In this section, we present this hierarchy in a bilinear form,
which comprises various bilinear equations for the tau function τ = τ(s, r, t, t̄). In the following
consideration, we shall frequently use shortened notations such as τ(s, r) for τ(s, r, t, t̄) to save
spaces.
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2.1 Bilinear equation of contour integral type

The most fundamental bilinear equation is the equation∮
dz

2πi
zs′+r′−s−reξ(t

′−t,z)τ(s′, r′, t′ − [z−1], t̄′)τ(s, r, t + [z−1], t̄)

+
∮

dz

2πi
zs+r−s′−r′−4eξ(t−t′,z)τ(s′ + 1, r′ + 1, t′ + [z−1], t̄′)τ(s− 1, r − 1, t− [z−1], t̄)

=
∮

dz

2πi
zs′−r′−s+reξ(t̄

′−t̄,z−1)τ(s′ + 1, r′, t′, t̄′ − [z])τ(s− 1, r, t, t̄ + [z])

+
∮

dz

2πi
zs−r−s′+r′eξ(t̄−t̄′,z−1)τ(s′, r′ + 1, t′, t̄′ + [z])τ(s, r − 1, t, t̄− [z]) (2.1)

that is understood to hold for arbitrary values of (s, r, t, t̄) and (s′, r′, t′, t̄′). This equation is
a modification of the bilinear equation derived by Willox [17, 18] in a fermionic construction of
the tau function (see Section 2.3 below). Note that we have used the standard notations

[z] =
(
z,
z2

2
,
z3

3
, . . .

)
, ξ(t, z) =

∞∑
k=1

tkz
k,

and both hand sides of the bilinear equation are contour integrals along simple closed cycles C∞
(for integrals on the left hand side) and C0 (for integrals on the right hand side) that encircle
the points z = ∞ and z = 0. Actually, since these integrals simply extract the coefficient of
z−1 from Laurent expansion at those points, we can redefine these integrals as a genuine linear
map from Laurent series to constants:∮

dz

2πi

∞∑
n=−∞

anz
n = a−1.

As we show below, this bilinear equation is a generating functional expression of an infinite
number of Hirota equations.

In some cases, it is more convenient to shift s and r as s→ s+1 and r → r+1. The outcome
is the equation∮

dz

2πi
zs′+r′−s−r−2eξ(t

′−t,z)τ(s′, r′, t′ − [z−1], t̄′)τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

dz

2πi
zs+r−s′−r′−2eξ(t−t′,z)τ(s′ + 1, r′ + 1, t′ + [z−1], t̄′)τ(s, r, t− [z−1], t̄)

=
∮

dz

2πi
zs′−r′−s+reξ(t̄

′−t̄,z−1)τ(s′ + 1, r′, t′, t̄′ − [z])τ(s, r + 1, t, t̄ + [z])

+
∮

dz

2πi
zs−r−s′+r′eξ(t̄−t̄′,z−1)τ(s′, r′ + 1, t′, t̄′ + [z])τ(s+ 1, r, t, t̄− [z]). (2.2)

By changing variables as z → z−1 on the right hand side, this equation can be converted to
a more symmetric form as∮

dz

2πi
zs′+r′−s−r−2eξ(t

′−t,z)τ(s′, r′, t′ − [z−1], t̄′)τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

dz

2πi
zs+r−s′−r′−2eξ(t−t′,z)τ(s′ + 1, r′ + 1, t′ + [z−1], t̄′)τ(s, r, t− [z−1], t̄)

=
∮

dz

2πi
z−s′+r′+s−r−2eξ(t̄

′−t̄,z)τ(s′ + 1, r′, t′, t̄′ − [z−1])τ(s, r + 1, t, t̄ + [z−1])

+
∮

dz

2πi
z−s+r+s′−r′−2eξ(t̄−t̄′,z)τ(s′, r′ + 1, t′, t̄′ + [z−1])τ(s+ 1, r, t, t̄− [z−1]),

though we shall not pursue this line further.
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2.2 Hirota equations

Following the standard procedure, we now introduce arbitrary constants

a = (a1, a2, . . .), ā = (ā1, ā2, . . .)

and shift the continuous variables t, t′, t̄, t̄′ in the bilinear equation (2.1) as

t′ → t− a, t̄′ → t̄− ā, t → t + a, t̄ → t̄ + ā.

The bilinear equation thereby takes such a form as∮
dz

2πi
zs′+r′−s−re−2ξ(a,z)τ(s′, r′, t− a− [z−1], t̄− ā)τ(s, r, t + a + [z−1], t̄ + ā)

+
∮

dz

2πi
zs+r−s′−r′−4e2ξ(a,z)τ(s′ + 1, r′ + 1, t− a + [z−1], t̄− ā)

× τ(s− 1, r − 1, t + a− [z−1], t̄ + ā)

=
∮

dz

2πi
zs′−r′−s+re−2ξ(ā,z−1)τ(s′ + 1, r′, t− a, t̄− ā− [z])τ(s− 1, r, t + a, t̄ + ā + [z])

+
∮

dz

2πi
zs−r−s′+r′e2ξ(ā,z−1)τ(s′, r′ + 1, t− a, t̄− ā + [z])τ(s, r − 1, t + a, t̄ + ā− [z]).

With the aid of Hirota’s notations

Dtnf · g = ∂tnf · g − f · ∂tng, Dt̄nf · g = ∂t̄nf · g − f · ∂t̄ng,

the product of two shifted tau functions in each term of this equation can be expressed as

τ(s′, r′, t− a− [z−1], t̄− ā)τ(s, r, t + a + [z−1], t̄ + ā)

= eξ(D̃t,z−1)e〈a,Dt〉+〈ā,Dt̄〉τ(s, r, t, t̄) · τ(s′, r′, t, t̄),

etc., where Dt and Dt̄ denote the arrays

Dt = (Dt1 , Dt2 , . . . , Dtn , . . .), Dt̄ = (Dt̄1 , Dt̄2 , . . . , Dt̄n , . . .)

of Hirota bilinear operators, D̃t and D̃t̄ their variants

D̃t =
(
Dt1 ,

1
2
Dt2 , . . . ,

1
n
Dtn , . . .

)
, D̃t̄ =

(
Dt̄1 ,

1
2
Dt̄2 , . . . ,

1
n
Dt̄n , . . .

)
,

and 〈a, Dt〉 and 〈ā, Dt̄〉 their linear combinations

〈a, Dt〉 =
∞∑

n=1

anDtn , 〈ā, Dt̄〉 =
∞∑

n=1

ānDt̄n .

Let us introduce the functions hn(t), n ≥ 0, defined by the generating function

∞∑
n=0

hn(t)zn = eξ(t,z).

The first few terms read

h0(t) = 1, h1(t) = t1, h2(t) =
t21
2

+ t2, h3(t) =
t31
6

+ t1t2 + t3, . . . .
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The prefactors e±2ξ(a,z), etc., can be thereby expanded as

e±2ξ(a,z) =
∞∑

n=0

hn(±2a)zn, e±2ξ(ā,z−1) =
∞∑

n=0

hn(±2ā)z−n.

Similarly, the exponential operators e±ξ(D̃t,z−1), etc., can be expanded as

e±ξ(D̃t,z−1) =
∞∑

n=0

hn(D̃t)z−n, e±ξ(D̃t̄,z) =
∞∑

n=0

hn(D̃t̄)z
n.

The bilinear equation thus turns into the Hirota form

∞∑
n=0

hn(−2a)hn+s′+r′−s−r+1(D̃t)e〈a,Dt〉+〈ā,Dt̄〉τ(s, r) · τ(s′, r′)

+
∞∑

n=0

hn(2a)hn+s+r−s′−r′−3(−D̃t)e〈a,Dt〉+〈ā,Dt̄〉τ(s− 1, r − 1) · τ(s′ + 1, r′ + 1)

=
∞∑

n=0

hn(−2ā)hn−s′+r′+s−r−1(D̃t̄)e
〈a,Dt〉+〈ā,Dt̄〉τ(s− 1, r) · τ(s′ + 1, r′)

+
∞∑

n=0

hn(2ā)hn−s+r+s′−r′−1(−D̃t̄)e
〈a,Dt〉+〈ā,Dt̄〉τ(s, r − 1) · τ(s′, r′ + 1). (2.3)

The last equation is still a generating functional expression, from which one can derive an
infinite number of equations by Taylor expansion of both hand sides at a = 0 and ā = 0. For
example, the linear part of the expansion give the equations

(−2hn+s′+r′−s−r+1(D̃t) + hs′+r′−s−r+1(D̃t)Dtn)τ(s, r) · τ(s′, r′)
+ (2hn+s+r−s′−r′−3(−D̃t) + hs+r−s′−r′−3(−D̃t)Dtn)τ(s− 1, r − 1) · τ(s′ + 1, r′ + 1)

= h−s′+r′+s−r−1(D̃t̄)Dtnτ(s− 1, r) · τ(s′ + 1, r′)

+ h−s+r+s′−r′−1(−D̃t̄)Dtnτ(s, r − 1) · τ(s′, r′ + 1)

and

hs′+r′−s−r+1(D̃t)Dt̄nτ(s, r) · τ(s
′, r′)

+ hs+r−s′−r′−3(−D̃t)Dt̄nτ(s− 1, r − 1) · τ(s′ + 1, r′ + 1)

= (−2hn−s′+r′+s−r−1(D̃t̄) + h−s′+r′+s−r−1(D̃t̄n)Dt̄n)τ(s− 1, r) · τ(s′ + 1, r′)

+ (2hn−s+r+s′−r′−1(−D̃t̄) + h−s+r+s′−r′−1(−D̃t̄)Dt̄n)τ(s, r − 1) · τ(s′, r′ + 1) (2.4)

for n = 0, 1, . . .. In particular, the special case of (2.4) where s′ = s, r′ = r and n = 1 gives the
equation

1
2
Dt1Dt̄1τ(s, r) · τ(s, r) + τ(s− 1, r)τ(s+ 1, r)− τ(s, r − 1)τ(s, r + 1) = 0.

Moreover, specializing (2.3) to a = ā = 0, s′ = s+ 1 and r′ = r − 1 yields the equation

Dt1τ(s, r) · τ(s+ 1, r − 1) +Dt̄1τ(s, r − 1) · τ(s+ 1, r) = 0. (2.5)

These equations give the lowest part of the whole Hirota equations.
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2.3 Fermionic formula of tau functions

Solutions of these bilinear equations are given by ground state expectation values of operators
on the Fock space of 2D complex free fermions.

Let us recall basic constituents of the fermion system. ψj , ψ∗j (j ∈ Z) denote the Fourier
modes of fermion fields

ψ(z) =
∞∑

j=−∞
ψjz

j , ψ∗(z) =
∞∑

j=−∞
ψ∗j z

−j−1.

They obey the anti-commutation relations

[ψj , ψ
∗
k]+ = δjk, [ψj , ψk]+ = [ψ∗j , ψ

∗
k]+ = 0.

|0〉 and 〈0| denote the vacuum states characterized by the annihilation conditions

〈0|ψj = 0 for j ≥ 0, ψj |0〉 = 0 for j < 0,
〈0|ψ∗j = 0 for j < 0, ψ∗j |0〉 = 0 for j ≥ 0.

The Fock space and its dual space are generated these vacuum states, and decomposed to
eigenspaces of the charge operator

H0 =
∞∑

j=−∞
:ψjψ

∗
j : (normal ordering).

The ground states of the charge-s subspace are given by

|s〉 =

{
ψs−1 · · ·ψ0|0〉 for s > 0,
ψ∗s · · ·ψ∗−1|0〉 for s < 0,

〈s| =

{
〈0|ψ∗0 · · ·ψ∗s−1 for s > 0,
〈0|ψ−1 · · ·ψs for s < 0.

Hn (n ∈ Z) denote the Fourier modes

Hn =
∞∑

j=−∞
:ψjψ

∗
j+n: (normal ordering)

of the U(1) current

J(z) = :ψ(z)ψ∗(z): =
∞∑

n=−∞
Hnz

−n−1.

They obey the commutation relations

[Hm,Hn] = mδm+n,0

of a Heisenberg algebra.
Solutions of the bilinear equations are now given by

τ(s, r, t, t̄) = 〈s+ r|eH(t)ge−H̄(t̄)|s− r〉, (2.6)

where H(t) and H̄(t̄) are the linear combinations

H(t) =
∞∑

n=1

tnHn, H̄(t̄) =
∞∑

n=1

t̄nH−n
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of Hn’s, and g is an operator of the form

g = exp

∑
j,k

ajk:ψjψ
∗
k: +

∑
j,k

bjk:ψjψk: +
∑
j,k

cjk:ψ∗jψ
∗
k:

 .

Note that this operator, unlike H(t) and H̄(t̄), does not preserve charges, hence the foregoing
expectation value can take nonzero values for r 6= 0.

Let us mention that Willox’s original definition [17, 18] of the tau function is slightly different
from (2.6). His definition reads

τ̃(s, r, t, t̄) = 〈s+ r|eH(t)eH̄(t̄)ge−H̄(t̄)|s− r〉.

This is certainly different from our definition; for example, Hirota equations are thereby modi-
fied. The difference is, however, minimal, because the two tau functions are connected by the
simple relation

τ̃(s, r, t, t̄) = exp

( ∞∑
n=1

ntnt̄n

)
τ(s, r, t, t̄),

so that one can transfer from one definition to the other freely.
The bilinear equation (2.1) is a consequence of the identity∮

dz

2πi
(ψ(z)g ⊗ ψ∗(z)g + ψ∗(z)g ⊗ ψ(z)g)

=
∮

dz

2πi
(gψ(z)⊗ gψ∗(z) + gψ∗(z)⊗ gψ(z))

satisfied by the operator g. This identity implies the equation∮
dz

2πi
〈s′ + r′ + 1|eH′

ψ(z)ge−H̄′ |s′ − r′〉〈s+ r − 1|eHψ∗(z)ge−H̄ |s− r〉

+
∮

dz

2πi
〈s′ + r′ + 1|eH′

ψ∗(z)ge−H̄′ |s′ − r′〉〈s+ r − 1|eHψ(z)ge−H̄ |s− r〉

=
∮

dz

2πi
〈s′ + r′ + 1|eH′

gψ(z)e−H̄′ |s′ − r′〉〈s+ r − 1|eHgψ∗(z)e−H̄ |s− r〉

+
∮

dz

2πi
〈s′ + r′ + 1|eH′

gψ∗(z)e−H̄′ |s′ − r′〉〈s+ r − 1|eHgψ(z)e−H̄ |s′ − r′〉,

where the abbreviated notations

H = H(t), H ′ = H(t′), H̄ = H̄(t̄), H̄ ′ = H̄(t̄′)

are used. This equation implies the bilinear equation (2.1) by the bosonization formulae

〈s|eH(t)ψ(z) = zs−1eξ(t,z)〈s− 1|eH(t−[z−1]),

〈s|eH(t)ψ∗(z) = z−s−1e−ξ(t,z)〈s+ 1|eH(t+[z−1])

and their duals

ψ(z)e−H̄(t̄)|s〉 = e−H̄(t̄−[z])|s+ 1〉zseξ(t̄,z
−1),

ψ∗(z)e−H̄(t̄)|s〉 = e−H̄(t̄+[z])|s− 1〉z−se−ξ(t̄,z−1).
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2.4 Relation to DKP hierarchy

The Pfaff–Toda hierarchy contains an infinite number of copies of the DKP hierarchy as sub-
systems.

Such a subsystem shows up by restricting the variables in (2.1) as

t̄′ = t̄, s = l + r, s′ = l + r′,

where l is a constant. (2.1) then reduces to the equation∮
dz

2πi
z2r′−2reξ(t

′−t,z)τ(l + r′, r′, t′ − [z−1], t̄)τ(l + r, r, t + [z−1], t̄)

+
∮

dz

2πi
z2r−2r′−4eξ(t−t′,z)τ(l + r′ + 1, r′ + 1, t′ + [z−1], t̄)

× τ(l + r − 1, r − 1, t− [z−1], t̄) = 0,

which is substantially the bilinear equation characterizing tau functions of the DKP hierarchy.
Thus

τ(l + r, r, t, t̄) = 〈l + 2r|eH(t)ge−H̄(t̄)|l〉 (2.7)

turns out to be a tau function of the DKP hierarchy with respect to t.
One can derive another family of subsystems by restricting the variables as

s = l + 1− r, s′ = l − 1− r, t′ = t,

where l is a constant. (2.1) thereby reduces to the equation

0 =
∮

dz

2πi
z−2r′+2r−2eξ(t̄

′−t̄,z−1)τ(l − r′, r′, t, t̄′ − [z])τ(l − r, r, t, t̄ + [z])

+
∮

dz

2πi
z−2r+2r′+2eξ(t̄−t̄′,z−1)τ(l − 1− r′, r′ + 1, t, t̄′ + [z])τ(l + 1− r, r − 1, t, t̄− [z]).

This is again equivalent to the bilinear equation for the DKP hierarchy. Thus

τ(l − r, r, t, t̄) = 〈l|eH(t)ge−H̄(t̄)|l − 2r〉 (2.8)

is a tau function of the DKP hierarchy with respect to t̄.

3 Auxiliary linear problem

3.1 Wave functions and dressing operators

To formulate an auxiliary linear problem, we now introduce the wave functions

Ψ1(s, r, t, t̄, z) = zs+reξ(t,z) τ(s, r, t− [z−1], t̄)
τ(s, r, t, t̄)

,

Ψ2(s, r, t, t̄, z) = zs+r−2eξ(t,z) τ(s− 1, r − 1, t− [z−1], t̄)
τ(s, r, t, t̄)

,

Ψ∗
1(s, r, t, t̄, z) = z−s−r−2e−ξ(t,z) τ(s+ 1, r + 1, t + [z−1], t̄)

τ(s, r, t, t̄)
,

Ψ∗
2(s, r, t, t̄, z) = z−s−re−ξ(t,z) τ(s, r, t + [z−1], t̄)

τ(s, r, t, t̄)
(3.1)
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and their duals

Ψ̄1(s, r, t, t̄, z) = zs−reξ(t̄,z
−1) τ(s+ 1, r, t, t̄− [z])

τ(s, r, t, t̄)
,

Ψ̄2(s, r, t, t̄, z) = zs−reξ(t̄,z
−1) τ(s, r − 1, t, t̄− [z])

τ(s, r, t, t̄)
,

Ψ̄∗
1(s, r, t, t̄, z) = z−s+re−ξ(t̄,z−1) τ(s, r + 1, t, t̄ + [z])

τ(s, r, t, t̄)
,

Ψ̄∗
2(s, r, t, t̄, z) = z−s+re−ξ(t̄,z−1) τ(s− 1, r, t, t̄ + [z])

τ(s, r, t, t̄)
. (3.2)

These wave functions are divided to two groups with respect to the aforementioned two copies of
the DKP hierarchy. When the discrete variables (s, r) are restricted on the line s = l+r, the first
four (3.1) may be thought of as wave functions of the DKP hierarchy with tau function (2.7).
Similarly, when (s, r) sit on the line s = l − r, the second four (3.2) are to be identified with
wave functions of the DKP hierarchy with tau function (2.8). If the tau function is given by the
fermionic formula (2.6), these wave functions, too, can be written in a fermionic form as

Ψ1(s, r, t, t̄, z) =
〈s+ r + 1|eHψ(z)ge−H̄ |s− r〉

〈s+ r|eHge−H̄ |s− r〉
,

Ψ2(s, r, t, t̄, z) =
〈s+ r − 1|eHψ(z)ge−H̄ |s− r〉

〈s+ r|eHge−H̄ |s− r〉
,

Ψ∗
1(s, r, t, t̄, z) =

〈s+ r + 1|eHψ∗(z)ge−H̄ |s− r〉
〈s+ r|eHge−H̄ |s− r〉

,

Ψ∗
2(s, r, t, t̄, z) =

〈s+ r − 1|eHψ∗(z)ge−H̄ |s− r〉
〈s+ r|eHge−H̄ |s− r〉

,

and

Ψ̄1(s, r, t, t̄, z) =
〈s+ r + 1|eHgψ(z)e−H̄ |s− r〉

〈s+ r|eHge−H̄ |s− r〉
,

Ψ̄2(s, r, t, t̄, z) =
〈s+ r − 1|eHgψ(z)e−H̄ |s− r〉

〈s+ r|eHge−H̄ |s− r〉
,

Ψ̄∗
1(s, r, t, t̄, z) =

〈s+ r + 1|eHgψ∗(z)e−H̄ |s− r〉
〈s+ r|eHge−H̄ |s− r〉

,

Ψ̄∗
2(s, r, t, t̄, z) =

〈s+ r − 1|eHgψ∗(z)e−H̄ |s− r〉
〈s+ r|eHge−H̄ |s− r〉

.

As a consequence of the bilinear equation (2.1), these wave functions satisfy a system of
bilinear equations. Those equations can be cast into a matrix form as∮

dz

2πi
Ψ2×2(s′, r′, t′, t̄

′, z) tΨ∗
2×2(s, r, t, t̄, z)

=
∮

dz

2πi
Ψ̄2×2(s′, r′, t′, t̄

′, z) tΨ̄∗
2×2(s, r, t, t̄, z), (3.3)

where

Ψ2×2(s, r, t, t̄, z) =
(

Ψ1(s, r, t, t̄, z) Ψ∗
1(s, r, t, t̄, z)

Ψ2(s, r, t, t̄, z) Ψ∗
2(s, r, t, t̄, z)

)
,
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Ψ∗
2×2(s, r, t, t̄, z) =

(
Ψ∗

1(s, r, t, t̄, z) Ψ1(s, r, t, t̄, z)
Ψ∗

2(s, r, t, t̄, z) Ψ2(s, r, t, t̄, z)

)
,

Ψ̄2×2(s, r, t, t̄, z) =
(

Ψ̄1(s, r, t, t̄, z) Ψ̄∗
1(s, r, t, t̄, z)

Ψ̄2(s, r, t, t̄, z) Ψ̄∗
2(s, r, t, t̄, z)

)
,

Ψ̄∗
2×2(s, r, t, t̄, z) =

(
Ψ̄∗

1(s, r, t, t̄, z) Ψ̄1(s, r, t, t̄, z)
Ψ̄∗

2(s, r, t, t̄, z) Ψ̄2(s, r, t, t̄, z)

)
.

Let us now introduce the dressing operators

W1 = 1 +
∞∑

n=1

w1ne
−n∂s , V1 =

∞∑
n=0

v1ne
(n+2)∂s ,

W2 =
∞∑

n=0

w2ne
−(n+2)∂s , V2 = 1 +

∞∑
n=1

v2ne
n∂s ,

W̄1 =
∞∑

n=0

w̄1ne
n∂s , V̄1 =

∞∑
n=0

v̄1ne
−n∂s ,

W̄2 =
∞∑

n=0

w̄2ne
n∂s , V̄2 =

∞∑
n=0

v̄2ne
−n∂s ,

where w1n, etc., are the coefficients of Laurent expansion of the tau-quotient in the wave func-
tions (3.1) and (3.2), namely,

τ(s, r, t− [z−1], t̄)
τ(s, r, t, t̄)

= 1 +
∞∑

n=1

w1nz
−n,

τ(s+ 1, r + 1, t + [z−1], t̄)
τ(s, r, t, t̄)

=
∞∑

n=0

v1nz
−n,

τ(s− 1, r − 1, t− [z−1], t̄)
τ(s, r, t, t̄)

=
∞∑

n=0

w2nz
−n,

τ(s, r, t + [z−1], t̄)
τ(s, r, t, t̄)

= 1 +
∞∑

n=1

v2nz
−n,

and

τ(s+ 1, r, t, t̄− [z])
τ(s, r, t, t̄)

=
∞∑

n=0

w̄1nz
n,

τ(s, r + 1, t, t̄ + [z])
τ(s, r, t, t̄)

=
∞∑

n=0

v̄1nz
n,

τ(s, r − 1, t, t̄− [z])
τ(s, r, t, t̄)

=
∞∑

n=0

w̄2nz
n,

τ(s− 1, r, t, t̄ + [z])
τ(s, r, t, t̄)

=
∞∑

n=0

v̄2nz
n.

The wave function can be thereby expressed as

Ψα(s, r, t, t̄, z) = Wαz
s+reξ(t,z), Ψ̄α(s, r, t, t̄, z) = W̄αz

s−reξ(t̄,z
−1),

Ψ∗
α(s, r, t, t̄, z) = Vαz

−s−re−ξ(t,z), Ψ̄∗
α(s, r, t, t̄, z) = V̄αz

−s+re−ξ(t̄,z−1).

3.2 Algebraic relations among dressing operators

A technical clue of the following consideration is a formula that connects wave functions and
dressing operators. This formula is an analogue of the formula for the case where the dressing
operators are pseudo-differential operators [30, 31, 32]. Let us introduce a few notations. For
a pair of difference operators of the form

P =
∞∑

n=−∞
pn(s)en∂s , Q =

∞∑
n=−∞

qn(s)en∂s ,
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let Ψ(s, z) and Φ(s, z) denote the wave functions

Ψ(s, z) = Pzs =
∞∑

n=−∞
pn(s)zn+s, Φ(s, z) = Qz−s =

∞∑
n=−∞

qn(s)z−n−s.

Moreover, let P ∗ denote the formal adjoint

P ∗ =
∞∑

n=−∞
e−n∂spn(s),

and (P )s′s the “matrix elements”

(P )s′s = ps−s′(s′).

With these notations, the formula reads∮
dz

2πi
Ψ(s′, z)Φ(s, z) = (Pe∂sQ∗)s′s = (Qe−∂sP ∗)ss′ . (3.4)

One can derive this formula by straightforward calculations, which are rather simpler than the
case of pseudo-differential operators [30, 31, 32].

To illustrate the usage of this formula, we now derive a set of algebraic relations satisfied by
the dressing operators from the bilinear equation (3.3) specialized to t′ = t and t̄′ = t̄. Since
these relations contain dressing operators for two different values of r, let us indicate the (s, r)
dependence explicitly as W (s, r), etc.

Theorem 1. Specialization of the bilinear equation (3.3) to t′ = t and t̄′ = t̄ is equivalent to
the algebraic relations

Wα(s, r′)e(r
′−r+1)∂sVβ(s, r)∗ + Vα(s, r′)e(r

′−r−1)∂sWβ(s, r)∗

= W̄α(s, r′)e(r−r′+1)∂s V̄β(s, r)∗ + V̄α(s, r′)e(r−r′−1)∂sW̄β(s, r)∗ (3.5)

for α, β = 1, 2.

Proof. The (1, 1) component of the specialized bilinear equation reads∮
dz

2πi
Ψ1(s′, r′, z)Ψ∗

1(s, r, z) +
∮

dz

2πi
Ψ∗

1(s
′, r′, z)Ψ1(s, r, z)

=
∮

dz

2πi
Ψ̄1(s′, r′, z)Ψ̄∗

1(s, r, z) +
∮

dz

2πi
Ψ̄∗

1(s
′, r′, z)Ψ̄1(s, r, z).

By the key formula (3.4), each term of this equation can be expressed as∮
dz

2πi
Ψ1(s′, r′, z)Ψ∗

1(s, r, z) = (W1(s, r′)e(r
′−r+1)∂sV1(s, r))s′s,∮

dz

2πi
Ψ∗

1(s
′, r′, z)Ψ1(s, r, z) = (W1(s, r)e(r−r′+1)∂sV1(s, r′))ss′

= (V1(s, r′)e(r
′−r−1)∂sW1(s, r))s′s,∮

dz

2πi
Ψ̄1(s′, r′, z)Ψ̄∗

1(s, r, z) = (W̄1(s, r′)e(r−r′+1)∂s V̄1(s, r))s′s,∮
dz

2πi
Ψ̄∗

1(s
′, r′, z)Ψ̄1(s, r, z) = (W̄1(s, r)e(r

′−r+1)∂s V̄1(s, r′))ss′

= (V̄1(s, r′)e(r−r′−1)∂sW̄1(s, r))s′s.

Thus we find that the (1, 1) component of the specialized bilinear equation is equivalent to (3.5)
for α = β = 1. The other components can be treated in the same way. �
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In particular, letting r′ = r in (3.5), we obtain a set of algebraic relations satisfied by W , V ,
W̄ , V̄ . We can rewrite these relations in the following matrix form, which turns out to be useful
later on. Note that the formal adjoint of a matrix of operators is defined to be the transposed
matrix of the formal adjoints of matrix elements as(

A B
C D

)∗
=
(
A∗ C∗

B∗ D∗

)
.

Corollary 1. The dressing operators satisfy the algebraic relation(
W1 V̄1

W2 V̄2

)∗
=
(

0 e∂s

−e−∂s 0

)(
W̄1 V1

W̄2 V2

)−1( 0 −e∂s

e−∂s 0

)
(3.6)

or, equivalently,(
W̄1 V1

W̄2 V2

)∗
=
(

0 e∂s

−e−∂s 0

)(
W1 V̄1

W2 V̄2

)−1( 0 −e∂s

e−∂s 0

)
. (3.7)

Proof. Let us examine (3.5) in the case where r′ = r. The (1, 1) component reads

W1e
∂sV ∗1 + V1e

−∂sW ∗
1 = W̄1e

∂s V̄ ∗1 + V̄1e
−∂sW̄ ∗

1 .

Among the four terms in this relation, W1e
∂sV ∗1 and V̄1e

−∂sW̄ ∗
1 are linear combinations of

e−∂s , e−2∂s , . . ., and V1e
−∂sW ∗

1 and W̄1e
∂s V̄ ∗1 are linear combinations of e∂s , e2∂s , . . .. Therefore

this relation splits into the two relations

V1e
−∂sW ∗

1 = W̄1e
∂s V̄ ∗1 , W1e

∂sV ∗1 = V̄1e
−∂sW̄ ∗

1 ,

which are actually equivalent. In the same way, we can derive the relations

V2e
−∂sW ∗

2 = W̄2e
∂s V̄ ∗2 , W2e

∂sV ∗2 = V̄2e
−∂sW̄ ∗

2

from the (2, 2) component of (3.5). Let us now consider the (1, 2) component, which we rewrite
as

W1e
∂sV ∗2 − V̄1e

−∂sW̄ ∗
2 = W̄1e

∂s V̄ ∗2 − V1e
−∂sW ∗

2 .

The left hand side is a sum of e∂s and a linear combination of 1, e−∂s , . . ., and the right hand
side is a sum of e∂s and a linear combination of e2∂s , e3∂s , . . .. Therefore both hand sides should
be equal to e∂s , namely,

W1e
∂sV ∗2 − V̄1e

−∂sW̄ ∗
2 = W̄1e

∂s V̄ ∗2 − V1e
−∂sW ∗

2 = e∂s .

By the same reasoning, we can derive the relations

W2e
∂sV ∗1 − V̄2e

−∂sW̄ ∗
1 = W̄2e

∂s V̄ ∗1 − V2e
−∂sW ∗

1 = −e−∂s

from the (2, 1) component of (3.5). These relations can be cast into a matrix form as (3.6)
and (3.7). �

(3.6) and (3.7) may be thought of as constraints preserved under time evolutions with respect
to t and t̄. Actually, the discrete variable r, too, has to be interpreted as a time variable. Letting
r′ = r + 1 in (3.5), we can see how the dressing operators evolve in r.
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Corollary 2. The dressing operators with r shifted by one are related to the unshifted dressing
operators as(

W1(s, r + 1) V̄1(s, r + 1)
W2(s, r + 1) V̄2(s, r + 1)

)(
e∂s 0
0 e−∂s

)
=
(
A B
C 0

)(
W1 V̄1

W2 V̄2

)
,(

W̄1(s, r + 1) V1(s, r + 1)
W̄2(s, r + 1) V2(s, r + 1)

)(
e−∂s 0

0 e∂s

)
=
(
A B
C 0

)(
W̄1 V1

W̄2 V2

)
, (3.8)

where

A = e∂s +
(

log
τ(s+ 1, r)
τ(s, r + 1)

)
t1

+
τ(s+ 1, r + 1)τ(s− 1, r)

τ(s, r + 1)τ(s, r)
e−∂s ,

B = −τ(s+ 1, r + 1)
τ(s, r)

e∂s , C =
τ(s− 1, r)
τ(s, r + 1)

e−∂s . (3.9)

Proof. When r′ = r + 1, (3.5) reads

Wα(s, r + 1)e2∂sV ∗β + Vα(s, r + 1)W ∗
β = W̄α(s, r + 1)V̄ ∗β + V̄α(s, r + 1)e−2∂sW̄ ∗

β .

These equations can be cast into a matrix form as(
W1(s, r + 1) V̄1(s, r + 1)
W2(s, r + 1) V̄2(s, r + 1)

)(
0 e2∂s

−e−2∂s 0

)(
W̄ ∗

1 W̄ ∗
2

V ∗1 V ∗2

)
=
(
W̄1(s, r + 1) V1(s, r + 1)
W̄2(s, r + 1) V2(s, r + 1)

)(
0 1
−1 0

)(
W ∗

1 W ∗
2

V̄ ∗1 V̄ ∗2

)
.

Noting that(
W̄ ∗

1 W̄ ∗
2

V ∗1 V ∗2

)
=
(
W̄1 V1

W̄2 V2

)∗
,

(
W ∗

1 W ∗
2

V̄ ∗1 V̄ ∗2

)
=
(
W1 V̄1

W2 V̄2

)∗
,

we can use (3.6) and (3.7) to rewrite this equation as(
W1(s, r + 1) V̄1(s, r + 1)
W2(s, r + 1) V̄2(s, r + 1)

)(
e∂s 0
0 e−∂s

)(
W1 V̄1

W2 V̄2

)−1

=
(
W̄1(s, r + 1) V1(s, r + 1)
W̄2(s, r + 1) V2(s, r + 1)

)(
e−∂s 0

0 e∂s

)(
W̄1 V1

W̄2 V2

)−1

.

By the definition of the dressing operators, the left hand side of this equation is a matrix of
operators of the form e∂s + w11(s, r + 1)− w11(s+ 1, r) + · · · − v̄10(s+ 1, r)

v̄20(s+ 1, r)
e∂s + · · ·

•e−∂s + •e−2∂s + · · · •e−∂s + •e−2∂s + · · ·


(• denotes a function), and the right hand side take such a form as

w̄10(s, r + 1)
w̄10(s− 1, r)

e−∂s + · · · •e∂s + •e2∂s + · · ·
w̄20(s, r + 1)
w̄10(s− 1, r)

e−∂s + · · · •e∂s + •e2∂s + · · ·

 .

Consequently,(
W1(s, r + 1) V̄1(s, r + 1)
W2(s, r + 1) V2(s, r + 1)

)(
e∂s 0
0 e−∂s

)(
W1 V̄1

W2 V̄2

)−1

=
(
A B
C 0

)
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and (
W̄1(s, r + 1) V1(s, r + 1)
W̄2(s, r + 1) V2(s, r + 1)

)(
e−∂s 0

0 e∂s

)(
W̄1 V1

W̄2 V2

)−1

=
(
A B
C 0

)
,

where

A = e∂s + w11(s, r + 1)− w11(s+ 1, r) +
w̄10(s, r + 1)
w̄10(s− 1, r)

e−∂s ,

B = − v̄10(s+ 1, r)
v̄20(s+ 1, r)

e∂s , C = w20(s, r + 1)e−∂s =
w̄20(s, r + 1)
w̄10(s− 1, r)

e−∂s .

Rewriting this result in terms of the tau functions, we obtain the formulae (3.9) of A, B, C. �

3.3 Evolution equations of dressing operators

The dressing operators turn out to satisfy a set of evolution equations with respect to the
continuous time variables t and t̄ as well. To present the result, let us introduce the notations

(P )≥0 =
∑
n≥0

pne
n∂s , (P )>0 =

∑
n>0

pne
n∂s ,

(P )≤0 =
∑
n≤0

pne
n∂s , (P )<0 =

∑
n<0

pne
n∂s

of truncated operators for difference operators of the form

P =
∞∑

n=−∞
pne

n∂s .

Theorem 2. The dressing operators satisfy the equations(
W1,tn +W1e

n∂s V̄1,tn

W2,tn +W2e
n∂s V̄2,tn

)
=
(
An Bn

Cn Dn

)(
W1 V̄1

W2 V̄2

)
,(

W̄1,tn V1,tn − V1e
−n∂s

W̄2,tn V2,tn − V2e
−n∂s

)
=
(
An Bn

Cn Dn

)(
W̄1 V1

W̄2 V2

)
, (3.10)

where the subscript tn in W1,tn, etc., stands for differentiating the coefficients of the difference
operators by tn,

Wα,tn =
∂Wα

∂tn
, Vα,tn =

∂Vα

∂tn
, W̄α,tn =

∂W̄α

∂tn
, V̄α,tn =

∂V̄α

∂tn
,

and An, Bn, Cn and Dn are defined as

An = (W1e
(n+1)∂sV ∗2 e

−∂s)≥0 + (V1e
−(n+1)∂sW ∗

2 e
−∂s)<0,

Bn = −(W1e
(n+1)∂sV ∗1 e

∂s)>0 − (V1e
−(n+1)∂sW ∗

1 e
∂s)≤0,

Cn = (W2e
(n+1)∂sV ∗2 e

−∂s)≥0 + (V2e
−(n+1)∂sW ∗

2 e
−∂s)<0,

Dn = −(W2e
−(n+1)∂sV ∗1 e

∂s)>0 − (V2e
−(n+1)∂sW ∗

1 e
∂s)≤0.

Proof. Differentiate the bilinear equation (3.3) by t′n and specialize the variables to t′ = t,
t̄′ = t̄, s′ = s and r′ = r. This leads to the equation∮

dz

2πi
∂tnΨ2×2(s, r, z) · tΨ∗

2×2(s, r, z) =
∮

dz

2πi
∂tnΨ̄∗

2×2(s, r, z) · tΨ̄∗
2×2(s, r, z).
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The tn-derivatives of the wave functions in this equation can be expressed as

∂tnΨα(s, r, z) = (Wα,tn +Wαe
n∂s)zs+reξ(t,z),

∂tnΨ∗
α(s, r, z) = (Vα,tn − Vαe

−n∂s)z−s−re−ξ(t,z),

∂tnΨ̄α(s, r, z) = W̄α,tnz
s−reξ(t̄,z

−1),

∂tnΨ̄∗
α(s, r, z) = V̄α,tne

−s+re−ξ(t̄,z−1).

We now use the key formula (3.4) to convert the last equation to equations for the dressing
operators. Those equations can be cast into a matrix form as(

W1,tn +W1e
n∂s V̄1,tn

W2,tn +W2e
n∂s V̄1,tn

)(
0 −e∂s

e−∂s 0

)(
W̄ ∗

1 W̄ ∗
2

V ∗1 V ∗2

)
=
(
W̄1,tn V1,tn − V1e

−n∂s

W̄2,tn V2,tn − V2e
−n∂s

)(
0 −e∂s

e−∂s 0

)(
W ∗

1 W ∗
2

V̄ ∗1 V̄ ∗2

)
.

By (3.6) and (3.7), this equation can be rewritten as(
W1,tn +W1e

n∂s V̄1,tn

W2,tn +W2e
n∂s V̄1,tn

)(
W1 V̄1

W2 V̄2

)−1

=
(
W̄1,tn V1,tn − V1e

−n∂s

W̄2,tn V2,tn − V2e
−n∂s

)(
W̄1 V1

W̄2 V2

)−1

.

Let An, Bn, Cn, Dn denote the matrix elements of both hand sides of this equation. To complete
the proof, we have to show that these difference operators do have the form stated in the theorem.
To this end, let us compare the two different expressions(

An Bn

Cn Dn

)
=
(
W1,tn +W1e

n∂s V̄1,tn

W2,tn +W2e
n∂s V̄2,tn

)(
W1 V̄1

W2 V̄2

)−1

=
(
W1,tn +W1e

n∂s V̄1,tn

W2,tn +W2e
n∂s V̄2,tn

)(
e∂sV ∗2 e

−∂s −e∂sV ∗1 e
∂s

−e−∂sW̄ ∗
2 e
−∂s e−∂sW̄ ∗

1 e
∂s

)
and (

An Bn

Cn Dn

)
=
(
W̄1,tn V1,tn − V1e

−n∂s

W̄2,tn V2,tn − V2e
−n∂s

)(
W̄1 V1

W̄2 V2

)−1

=
(
W̄1,tn V1,tn − V1e

−n∂s

W̄2,tn V2,tn − V2e
−n∂s

)(
e∂s V̄ ∗2 e

−∂s −e∂s V̄ ∗1 e
∂s

−e−∂sW ∗
2 e
−∂s e−∂sW ∗

1 e
∂s

)
of the matrix of these operators that can be derived from the foregoing construction and the
algebraic relations (3.6) and (3.7). As regards An, this implies that

An = (W1,tn +W1e
n∂s)e∂sV ∗2 e

−∂s − V̄1,tne
−∂sW̄ ∗

2 e
−∂s

= W̄1,tne
∂s V̄ ∗2 e

−∂s − (V1,tn − V1e
−n∂s)e−∂sW ∗

2 e
−∂s .

From the ( )≥0 part of the first line, we have the identity

(An)≥0 = (W1e
(n+1)∂sV ∗2 e

−∂s)≥0,

and from the ( )<0 part of the second line, similarly,

(An)<0 = (V1e
−(n+1)∂sW ∗

2 e
−∂s)<0.

Thus An turns out to be given by the sum of these operators as

An = (W1e
(n+1)∂sV ∗2 e

−∂s)≥0 + (V1e
−(n+1)∂sW ∗

2 e
−∂s)<0.

The other operators Bn, Cn, Dn, too, can be identified in a fully parallel manner. �



16 K. Takasaki

In much the same way, the following evolution equations in t̄ can be derived.

Theorem 3. The dressing operators satisfy the equations(
W1,t̄n V̄1,t̄n − V̄ne

n∂s

W2,t̄n V̄2,t̄n − V̄2e
n∂s

)
=
(
Ān B̄n

C̄n D̄n

)(
W1 V̄1

W2 V̄2

)
,(

W̄1,t̄n + W̄1e
−n∂s V1,t̄n

W̄2,t̄n + W̄2e
−n∂s V2,t̄n

)
=
(
Ān B̄n

C̄n D̄n

)(
W̄1 V1

W̄2 V2

)
, (3.11)

where

Ān = (W̄1e
−(n−1)∂s V̄ ∗2 e

−∂s)<0 + (V̄1e
(n−1)∂sW̄ ∗

2 e
−∂s)≥0,

B̄n = −(W̄1e
−(n−1)∂s V̄ ∗1 e

∂s)≤0 − (V̄1e
(n−1)∂sW̄ ∗

1 e
∂s)>0,

C̄n = (W̄2e
−(n−1)∂s V̄ ∗2 e

−∂s)<0 + (V̄2e
(n−1)∂sW̄ ∗

2 e
−∂s)≥0,

D̄n = −(W̄2e
−(n−1)∂s V̄ ∗1 e

∂s)≤0 − (V̄2e
(n−1)∂sW̄ ∗

1 e
∂s)>0.

3.4 Auxiliary linear equations

The evolution equations (3.10), (3.11) and (3.8) for the dressing operators can be readily cast
into auxiliary linear equations for the wave functions.

Corollary 3. The wave functions satisfy the following linear equations:

e∂r

(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
=
(
A B
C 0

)(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
, (3.12)

∂tn

(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
=
(
An Bn

Cn Dn

)(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
, (3.13)

∂t̄n

(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
=
(
Ān B̄n

C̄n D̄n

)(
Ψ1 Ψ∗

1 Ψ̄1 Ψ̄∗
1

Ψ2 Ψ∗
2 Ψ̄2 Ψ̄∗

2

)
. (3.14)

Note that each of (3.13), (3.14) and (3.12) is a collective expression of four sets of linear
equations, namely,(

e∂rΦ1

e∂rΦ2

)
=
(
A B
C 0

)(
Φ1

Φ2

)
,

(
∂tnΦ1

∂tnΦ2

)
=
(
An Bn

Cn Dn

)(
Φ1

Φ2

)
,(

∂t̄nΦ1

∂t̄nΦ2

)
=
(
Ān B̄n

C̄n D̄n

)(
Φ1

Φ2

)
for the four pairs Φα = Ψα,Ψ∗

α, Ψ̄α, Ψ̄∗
α (α = 1, 2) of wave functions. The lowest (n = 1)

equations of (3.13) and (3.14) agree with Willox’s result [17, 18]:(
∂t1Φ1(s, r, µ)
∂t1Φ2(s, r, µ)

)

=

 e∂s +
(
log τ(s+1,r)

τ(s,r)

)
t1

− τ(s+1,r+1)
τ(s,r) e∂s

τ(s−1,r−1)
τ(s,r) e−∂s −e−∂s +

(
log τ(s−1,r)

τ(s,r)

)
t1

( Φ1(s, r, µ)
Φ2(s, r, µ)

)
, (3.15)

(
∂t̄1Φ1(s, r, µ)
∂t̄1Φ2(s, r, µ)

)
=

(
τ(s+1,r)τ(s−1,r)

τ(s,r)2
e−∂s − τ(s+1,r)τ(s,r+1)

τ(s,r)2
e∂s

τ(s−1,r)τ(s,r−1)
τ(s,r)2

e−∂s − τ(s+1,r)τ(s−1,r)
τ(s,r)2

e∂s

)(
Φ1(s, r, µ)
Φ2(s, r, µ)

)
. (3.16)
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Thus we have obtained auxiliary linear equations for the Pfaff–Toda hierarchy. Apart from
the fact that difference operators play a central role, this auxiliary linear problem resembles
that of the DKP hierarchy (see Appendix). This is a manifestation of the common Lie algebraic
structure [2, 3] that underlies these hierarchies.

Let us specify an algebraic structure in the building blocks of the auxiliary linear problem.
Let U , Ū , Pn, P̄n and J denote the matrix operators

U =
(
W1 V̄1

W2 V̄2

)
, Ū =

(
W̄1 V1

W̄2 V2

)
, Pn =

(
An Bn

Cn Dn

)
,

P̄n =
(
Ān B̄n

C̄n D̄n

)
, J =

(
0 e∂s

−e−∂s 0

)
, J−1 = −J.

With these notations, (3.6) can be rewritten as

U∗ = JŪ−1J−1, Ū∗ = JU−1J−1.

This exhibits a Lie group structure (now realized in terms of difference operators). Moreover,
(3.10) and (3.11) imply that Pn and P̄n can be expressed as

Pn = UtnU
−1 + U

(
en∂s 0
0 0

)
U−1 = ŪtnŪ

−1 + Ū

(
0 0
0 −e−n∂s

)
Ū−1,

P̄n = Ut̄nU
−1 + U

(
0 0
0 −en∂s

)
U−1 = Ūt̄nŪ

−1 + Ū

(
e−n∂s 0

0 0

)
Ū−1.

We can confirm by straightforward calculations that Pn and P̄n satisfy the algebraic relations

P ∗n = −JPnJ
−1, P̄ ∗n = −JP̄nJ

−1,

which are obviously a Lie algebraic version of the foregoing constraints for U and Ū . In compo-
nents, these relations read

A∗n = −e∂sDne
−∂s , B∗n = e−∂sBne

−∂s , C∗n = e∂sCne
∂s , D∗

n = −e−∂sAne
∂s ,

and

Ā∗n = −e∂sD̄ne
−∂s , B̄∗n = e−∂sB̄ne

−∂s , C̄∗n = e∂sC̄ne
∂s , D̄∗

n = −e−∂sĀne
∂s .

These relations are parallel to algebraic relations in the case of the DKP hierarchy (see Ap-
pendix).

4 Difference Fay identities

4.1 How to derive difference Fay identities

We now derive six Fay-like identities with parameters λ and µ from the bilinear equation (2.2)
by specializing the free variables therein as follows:

1a) t′ = t + [λ−1] + [µ−1], t̄′ = t̄, s′ = s+ 1, r′ = r;

1b) t′ = t + [λ−1] + [µ−1], t̄′ = t̄, s′ = s, r′ = r + 1;

2a) t′ = t, t̄′ = t̄ + [λ] + [µ], s′ = s− 1, r′ = r;

2b) t′ = t, t̄′ = t̄ + [λ] + [µ], s′ = s, r′ = r + 1;

3a) t′ = t + [λ−1], t̄′ = t̄ + [µ], s′ = s, r′ = r;

3b) t′ = t + [λ−1], t̄′ = t̄ + [µ], s′ = s− 1, r′ = r + 1.

To clarify the meaning of calculations, we now assume that the integrals in (2.2) are contour in-
tegrals along simple closed curves C∞ and C0 encircling the points z = ∞ and z = 0 respectively.
λ and µ are understood to be in a particular position specified below.
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1a) and 1b). λ and µ are assumed to sit on the far side (closer to z = ∞) of the contour C∞.
The exponential factors in the integrand thereby become rational functions as

eξ(t
′−t,z) =

1
(1− z/λ)(1− z/µ)

, eξ(t̄
′−t̄,z−1) = 1.

Thus the bilinear equation (2.2) reduce to the equations∮
C∞

dz

2πi
λµ

z(z − λ)(z − µ)
τ(s+ 1, r, t + [λ−1] + [µ−1]− [z−1], t̄)τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

C∞

dz

2πi
(z − λ)(z − µ)

z3λµ
τ(s+ 2, r + 1, t + [λ−1] + [µ−1] + [z−1], t̄)τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
zτ(s+ 2, r, t + [λ−1] + [µ−1], t̄− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
1
z
τ(s+ 1, r + 1, t + [λ−1] + [µ−1], t̄ + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 1a) and∮
C∞

dz

2πi
λµ

z(z − λ)(z − µ)
τ(s, r + 1, t + [λ−1] + [µ−1]− [z−1], t̄)τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

C∞

dz

2πi
(z − λ)(z − µ)

z3λµ
τ(s+ 1, r + 2, t + [λ−1] + [µ−1] + [z−1], t̄)τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
1
z
τ(s+ 1, r + 1, t + [λ−1] + [µ−1], t̄− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
zτ(s, r + 2, t + [λ−1] + [µ−1], t̄ + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 1b). The contour integrals in these equation can be calculated by residue calculus.
For example, the first integral on the left hand side is given by the sum of residues of the
integrand at z = λ, µ; the other contour integrals can be treated in the same way. The outcome
are the equations

− µ

λ− µ
τ(s+ 1, r, t + [µ−1], t̄)τ(s+ 1, r + 1, t + [λ−1], t̄)

− λ

µ− λ
τ(s+ 1, r, t + [λ−1], t̄)τ(s+ 1, r + 1, t + [µ−1], t̄)

+
1
λµ
τ(s+ 2, r + 1, t + [λ−1] + [µ−1], t̄)τ(s, r, t, t̄)

= τ(s+ 1, r + 1, t + [λ−1] + [µ−1], t̄)τ(s+ 1, r, t, t̄), (4.1)

− µ

λ− µ
τ(s, r + 1, t + [µ−1], t̄)τ(s+ 1, r + 1, t + [λ−1], t̄)

− λ

µ− λ
τ(s, r + 1, t + [λ−1], t̄)τ(s+ 1, r + 1, t + [µ−1], t̄)

+
1
λµ
τ(s+ 1, r + 2, t + [λ−1] + [µ−1], t̄)τ(s, r, t, t̄)

= τ(s+ 1, r + 1, t + [λ−1] + [µ−1], t̄)τ(s, r + 1, t, t̄). (4.2)

2a) and 2b). λ and µ are assumed to be inside C0 (nearer to z = 0). The bilinear equa-
tion (2.2) turn into the equations∮

C∞

dz

2πi
1
z3
τ(s− 1, r, t− [z−1], t̄ + [λ] + [µ])τ(s+ 1, r + 1, t + [z−1], t̄)
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+
∮

C∞

dz

2πi
1
z
τ(s, r + 1, t + [z−1], t̄ + [λ] + [µ])τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
z

(z − λ)(z − µ)
τ(s, r, t, t̄ + [λ] + [µ]− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
(z − λ)(z − µ)

z
τ(s− 1, r + 1, t, t̄ + [λ] + [µ] + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 2a) and∮
C∞

dz

2πi
1
z
τ(s, r + 1, t− [z−1], t̄ + [λ] + [µ])τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

C∞

dz

2πi
1
z3
τ(s+ 1, r + 2, t + [z−1], t̄ + [λ] + [µ])τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
z

(z − λ)(z − µ)
τ(s+ 1, r + 1, t, t̄ + [λ] + [µ]− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
(z − λ)(z − µ)

z
τ(s, r + 2, t, t̄ + [λ] + [µ] + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 2b). By residue calculus, we obtain the equations

τ(s, r + 1, t, t̄ + [λ] + [µ])τ(s, r, t, t̄)

=
λ

λ− µ
τ(s, r, t, t̄ + [µ])τ(s, r + 1, t, t̄ + [λ])

+
µ

µ− λ
τ(s, r, t, t̄ + [λ])τ(s, r + 1, t, t̄ + [µ])

+ λµτ(s− 1, r + 1, t, t̄ + [λ] + [µ])τ(s+ 1, r, t, t̄), (4.3)
τ(s, r + 1, t, t̄ + [λ] + [µ])τ(s+ 1, r + 1, t, t̄)

=
λ

λ− µ
τ(s+ 1, r + 1, t, t̄ + [µ])τ(s, r + 1, t, t̄ + [λ])

+
µ

µ− λ
τ(s+ 1, r + 1, t, t̄ + [λ])τ(s, r + 1, t, t̄ + [µ])

+ λµτ(s, r + 2, t, t̄ + [λ] + [µ])τ(s+ 1, r, t, t̄). (4.4)

3a) and 3b). λ and µ are assumed to be on the far side of C∞ and inside C0 respectively.
The bilinear equation (2.2) turn into the equations∮

C∞

dz

2πi
−λ

z2(z − λ)
τ(s, r, t + [λ−1]− [z−1], t̄ + [µ])τ(s+ 1, r + 1, t + [z−1], t̄)

+
∮

C∞

dz

2πi
(z − λ)
−z2λ

τ(s+ 1, r + 1, t + [λ−1] + [z−1], t̄ + [µ])τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
z

z − µ
τ(s+ 1, r, t + [λ−1], t̄ + [µ]− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
z − µ

z
τ(s, r + 1, t + [λ−1], t̄ + [µ] + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 3a) and∮
C∞

dz

2πi
−λ

z2(z − λ)
τ(s− 1, r + 1, t + [λ−1]− [z−1], t̄ + [µ])τ(s+ 1, r + 1, t + [z−1], t̄)
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+
∮

C∞

dz

2πi
(z − λ)
−z2λ

τ(s, r + 2, t + [λ−1] + [z−1], t̄ + [µ])τ(s, r, t− [z−1], t̄)

=
∮

C0

dz

2πi
1

z(z − µ)
τ(s, r + 1, t + [λ−1], t̄ + [µ]− [z])τ(s, r + 1, t, t̄ + [z])

+
∮

C0

dz

2πi
z(z − µ)τ(s− 1, r + 2, t + [λ−1], t̄ + [µ] + [z])τ(s+ 1, r, t, t̄− [z])

in the case of 3b), and boil down to the equations

λ−1τ(s, r, t, t̄ + [µ])τ(s+ 1, r + 1, t + [λ−1], t̄)

− λ−1τ(s+ 1, r + 1, t + [λ−1], t̄ + [µ])τ(s, r, t, t̄)

= µτ(s+ 1, r, t + [λ−1], t̄)τ(s, r + 1, t, t̄ + [µ])

− µτ(s, r + 1, t + [λ−1], t̄ + [µ])τ(s+ 1, r, t, t̄), (4.5)

λ−1τ(s− 1, r + 1, t, t̄ + [µ])τ(s+ 1, r + 1, t + [λ−1], t̄)

− λ−1τ(s, r + 2, t + [λ−1], t̄ + [µ])τ(s, r, t, t̄)

= µ−1τ(s, r + 1, t + [λ−1], t̄)τ(s, r + 1, t, t̄ + [µ])

− µ−1τ(s, r + 1, t + [λ−1], t̄ + [µ])τ(s, r + 1, t, t̄). (4.6)

Actually, these calculations are meaningful even if the contour integrals are understood to
be genuine algebraic operators that extract the coefficient of z−1 from Laurent series. Thus we
are led to the following conclusion:

Theorem 4. The bilinear equation (2.1) implies the Fay-like identities (4.1)–(4.6).

In the rest of this paper, (4.1)–(4.6) are referred to as “difference Fay identities”. The
structure of these Fay-like equations is similar to the difference Fay identities of the Toda
hierarchy [22, 23, 1], though the latter are three-term relations and given on a 1D lattice.

4.2 Relation to auxiliary linear problem

We now show that the difference Fay identities are closely related to the auxiliary linear equa-
tions. To this end, let us rewrite the identities in the language of the wave functions as follows.

Theorem 5. The difference Fay identities (4.1)–(4.6) are equivalent to the system of the fol-
lowing four equations:

e−D(λ)Φ1(s, r, µ) + λ−1Φ1(s+ 1, r, µ)− e−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s, r)

Φ1(s, r, µ)

− λ−1 e
−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s+ 1, r + 1)

e−D(λ)Φ2(s+ 1, r, µ) = 0, (4.7)

eD(λ)Φ2(s, r, µ) + λ−1Φ2(s− 1, r, µ)− eD(λ)τ(s− 1, r)/τ(s− 1, r)
eD(λ)τ(s, r)/τ(s, r)

Φ2(s, r, µ)

− λ−1 e
D(λ)τ(s− 1, r)/τ(s− 1, r)
eD(λ)τ(s, r)/τ(s− 1, r − 1)

eD(λ)Φ1(s− 1, r, µ) = 0, (4.8)

e−D̄(λ)Φ1(s, r, µ)− Φ1(s, r, µ) + λ
e−D̄(λ)τ(s+ 1, r)/τ(s, r)
e−D̄(λ)τ(s, r)/τ(s− 1, r)

Φ1(s− 1, r, µ)

− λ
e−D̄(λ)τ(s+ 1, r)/τ(s, r)
e−D̄(λ)τ(s, r)/τ(s, r + 1)

e−D̄(λ)Φ2(s+ 1, r, µ) = 0, (4.9)
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eD̄(λ)Φ2(s, r, µ)− Φ2(s, r, µ) + λ
eD̄(λ)τ(s− 1, r)/τ(s, r)
eD̄(λ)τ(s, r)/τ(s+ 1, r)

Φ2(s+ 1, r, µ)

− λ
eD̄(λ)τ(s− 1, r)/τ(s, r)
eD̄(λ)τ(s, r)/τ(s, r − 1)

eD̄(λ)Φ1(s− 1, r, µ) = 0 (4.10)

for the four pairs Φα = Ψα,Ψ∗
α, Ψ̄α, Ψ̄∗

α (α = 1, 2) of wave functions, where D(z) and D̄(z)
denote the differential operators

D(z) =
∞∑

n=1

z−n

n
∂tn , D̄(z) =

∞∑
n=1

zn

n
∂t̄n .

Proof. One can derive the four difference Fay identities from (4.7)–(4.10) by straightforward
calculations. Actually, this turns out to be largely redundant, namely, each difference Fay iden-
tity appears more than once while processing the twelve equations of (4.7)–(4.10). Nevertheless
the calculations on the whole, are reversible, proving the converse simultaneously. Since the
whole calculations are considerably lengthy, let us demonstrate it by deriving (4.1) and (4.2)
from (4.7) and (4.8) for Φα = Ψα (α = 1, 2); the other cases are fully parallel. Recall that Ψα’s
can be expressed as

Ψ1(s, r, z) =
τ(s, r, t− [z−1], t̄)

τ(s, r, t, t̄)
zs+reξ(t,z),

Ψ2(s, r, z) =
τ(s− 1, r − 1, t− [z−1], t̄)

τ(s, r, t, t̄)
zs+r−2eξ(t,z).

(4.7) thereby reads

e−D(λ)Ψ1(s, r, µ) + λ−1Ψ1(s+ 1, r, µ)− e−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s, r)

Ψ1(s, r, µ)

− λ−1 e
−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s+ 1, r + 1)

e−D(λ)Ψ2(s+ 1, r, µ) = 0.

Noting the identity

e−D(λ)eξ(t,µ) = (1− µ/λ)eξ(t,µ),

we thus obtain the equation(
1− µ

λ

) τ(s, r, t− [λ−1]− [µ−1], t̄)
τ(s, r, t− [λ−1], t̄)

+
µ

λ

τ(s+ 1, r, t− [µ−1], t̄)
τ(s+ 1, r, t, t̄)

− τ(s+ 1, r, t− [λ−1], t̄)τ(s, r, t− [µ−1], t̄)
τ(s+ 1, r, t, t̄)τ(s, r, t− [λ−1], t̄)

− 1
λµ

(
1− µ

λ

) τ(s+ 1, r + 1, t, t̄)τ(s, r − 1, t− [λ−1]− [µ−1], t̄)
τ(s+ 1, r, t, t̄)τ(s, r, t− [µ−1], t̄)

= 0

for the tau function. Rewriting this equation as

τ(s, r, t− [λ−1]− [µ−1], t̄)τ(s+ 1, r, t, t̄) +
µ

λ− µ
τ(s+ 1, r, t− [µ−1], t̄)τ(s, r, t− [λ−1], t̄)

− λ

λ− µ
τ(s+ 1, r, t− [λ−1], t̄)τ(s, r, t− [µ−1], t̄)

− 1
λµ
τ(s+ 1, r + 1, t, t̄)τ(s, r − 1, t− [λ−1]− [µ−1], t̄) = 0



22 K. Takasaki

and shifting the variables as t → t + [λ−1] + [µ−1] and r → r+ 1, we arrive at (4.2). Let us now
consider (4.8), namely,

eD(λ)Ψ2(s, r, µ) + λ−1Ψ2(s− 1, r, µ)− eD(λ)τ(s− 1, r)/τ(s− 1, r)
eD(λ)τ(s, r)/τ(s, r)

Ψ2(s, r, µ)

− λ−1 e
D(λ)τ(s− 1, r)/τ(s− 1, r)
eD(λ)τ(s, r)/τ(s− 1, r − 1)

eD(λ)Ψ1(s− 1, r, µ) = 0.

This equation turns into the equation

λ

λ− µ
τ(s− 1, r − 1, t + [λ−1]− [µ−1], t̄)τ(s− 1, r, t, t̄)

+
1
λµ
τ(s− 2, r − 1, t− [µ−1], t̄)τ(s, r, t + [λ−1], t̄)

− τ(s− 1, r, t + [λ−1], t̄)τ(s− 1, r − 1, t− [µ−1], t̄)

− µ

λ− µ
τ(s− 1, r − 1, t, t̄)τ(s− 1, r, t + [λ−1]− [µ−1], t̄) = 0

for the tau function, and upon shifting the variables as t → t + [µ−1], s→ s+ 2 and r → r+ 1,
reduces to (4.1). It will be obvious that these calculations are reversible. �

Expanded in powers of λ, (4.7)–(4.10) generate an infinite set of linear equations for the wave
functions Φα(s, r, µ). As we show below, these linear equations are equivalent to the auxiliary
linear equations (3.13) and (3.14). Thus (4.7)–(4.10) turn out to give a generating functional
expression of these auxiliary linear equations.

Since the four equations (4.7)–(4.10) can be treated in the same manner, let us illustrate the
calculations in the case of (4.7). Among the four terms in this equation, the first and fourth
terms can be readily expanded by the identity

e−D(λ) =
∞∑

n=0

hn(−∂̃t)λ−n, ∂̃t =
(
∂t1 ,

1
2
∂t2 , . . . ,

1
n
∂tn , . . .

)
.

As regards the coefficients of the second and third terms, we can rewrite them as

e−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s, r)

= 1−
(

log
τ(s+ 1, r)
τ(s, r)

)
t1

λ−1 + f2λ
−2 + f3λ

−3 + · · ·

and

e−D(λ)τ(s+ 1, r)/τ(s+ 1, r)
e−D(λ)τ(s, r)/τ(s+ 1, r + 1)

=
τ(s+ 1, r + 1)

τ(s, r)

(
1−

(
log

τ(s+ 1, r)
τ(s, r)

)
t1

λ−1 + f2λ
−2 + f3λ

−3 + · · ·

)
,

where fn’s denote the coefficients of the expansion

exp
(

(e−D(λ) − 1) log
τ(s+ 1, r)
τ(s, r)

)
= exp

( ∞∑
n=1

λ−nhn(−∂̃t) log
τ(s+ 1, r)
τ(s, r)

)

= 1 +
∞∑

n=1

fnλ
−n.
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Thus, expanding (4.7) in powers of λ, we obtain the equation

−∂t1Φ1(s, r, µ) +

(
e∂s +

(
log

τ(s+ 1, r)
τ(s, r)

)
t1

)
Φ1(s, r, µ)

−τ(s+ 1, r + 1)
τ(s, r)

e∂sΦ2(s, r, µ) = 0 (4.11)

from the λ−1 terms and the equations

hn+1(−∂̃t)Φ1(s, r, µ)− fn+1Φ1(s, r, µ)

− τ(s+ 1, r + 1)
τ(s, r)

n∑
m=0

fmhn−m(−∂̃t)e∂sΦ2(s, r, µ) = 0 (4.12)

for n = 1, 2, . . . from the λ−n−1 terms.
In the same way, we can decompose (4.8), (4.9) and (4.10) into and the equations

∂t1Φ2(s, r, µ) +

(
e−∂s −

(
log

τ(s− 1, r)
τ(s, r)

)
t1

)
Φ2(s, r, µ)

− τ(s− 1, r − 1)
τ(s, r)

e−∂sΦ1(s, r, µ) = 0, (4.13)

−∂t̄1Φ1(s, r, µ) +
τ(s+ 1, r)τ(s− 1, r)

τ(s, r)2
e−∂sΦ1(s, r, µ)

− τ(s+ 1, r)τ(s, r + 1)
τ(s, r)2

e∂sΦ2(s, r, µ) = 0, (4.14)

∂t̄1Φ2(s, r, µ) +
τ(s− 1, r)τ(s+ 1, r)

τ(s, r)2
e∂sΦ2(s, r, µ)

− τ(s− 1, r)τ(s, r − 1)
τ(s, r)2

e−∂sΦ1(s, r, µ) = 0 (4.15)

and the equations

hn+1(∂̃t)Φ2(s, r, µ)− gn+1Φ2(r, s, µ)

− τ(s− 1, r − 1)
τ(s, r)

n∑
m=0

gmhn−m(∂̃t)e−∂sΦ1(s, r, µ) = 0, (4.16)

hn+1(−∂̃t̄)Φ1(s, r, µ) +
τ(s+ 1, r)τ(s− 1, r)

τ(s, r)2
f̄ne

−∂sΦ1(s, r, µ)

− τ(s+ 1, r)τ(s, r + 1)
τ(s, r)2

n∑
m=0

f̄mhn−m(−∂̃t̄)e
∂sΦ2(s, r, µ) = 0, (4.17)

hn+1(∂̃t̄)Φ2(s, r, µ) +
τ(s+ 1, r)τ(s− 1, r)

τ(s, r)2
ḡne

∂sΦ2(s, r, µ)

− τ(s− 1, r)τ(s, r − 1)
τ(s, r)2

n∑
m=0

ḡmhn−m(∂̃t̄)e
−∂sΦ1(s, r, µ) = 0 (4.18)

for n = 1, 2, . . ., where gn, f̄n and ḡn are the coefficients of the expansion

exp
(

(eD(λ) − 1) log
τ(s− 1, r)
τ(s, r)

)
= 1 +

∞∑
n=1

gnλ
−n,
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exp
(

(e−D̄(λ) − 1) log
τ(s+ 1, r)
τ(s, r)

)
= 1 +

∞∑
n=1

f̄nλ
n,

exp
(

(eD̄(λ) − 1) log
τ(s− 1, r)
τ(s, r)

)
= 1 +

∞∑
n=1

ḡnλ
n.

Among these equations, the lowest ones (4.11), (4.13), (4.14) and (4.15) can be cast into
a matrix form, which agrees with the lowest members (3.15) and (3.16) of (3.13) and (3.14).
Though the other equations (4.12), (4.16), (4.17) and (4.18) do not take such an evolutionary
form, they can be recursively converted to the form of (3.13) just as in the case of the DKP
hierarchy [1]. Thus the auxiliary linear equations can be recovered from the difference Fay
identities.

5 Dispersionless limit

5.1 Dispersionless Hirota equations

As in the case of the KP and Toda hierarchies [33], dispersionless limit is achieved by allowing
the tau function to depend on a small parameter (Planck constant) ~ and assuming the “quasi-
classical” behavior

τ~(s, r, t, t̄) = e~−2F (s,r,t,t̄)+O(~−1) (~ → 0) (5.1)

of the rescaled tau function

τ~(s, r, t, t̄) = τ(~−1s, ~−1r, ~−1t, ~−1t̄).

As we show below, the difference Fay identities for the rescaled tau function τ~(s, r, t, t̄) turn
into differential equations for the F -function F (s, r, t, t̄). Following the terminology commonly
used in the literature, let us call those equations “dispersioness Hirota equations”.

Let us first consider (4.1). Upon multiplying both hand sides by

τ(s+ 1, r + 1, t, t̄)
τ(s+ 1, r + 1, t + [λ−1], t̄)τ(s+ 1, r + 1, t + [µ−1], t̄)τ(s+ 1, r, t, t̄)

,

this equation turns into such a form as

τ(s+ 1, r + 1, t + [λ−1] + [µ−1], t̄)τ(s+ 1, r + 1, t, t̄)
τ(s+ 1, r + 1, t + [λ−1], t̄)τ(s+ 1, r + 1, t + [µ−1], t̄)

=
λ

λ− µ

τ(s+ 1, r, t + [λ−1], t̄)τ(s+ 1, r + 1, t, t̄)
τ(s+ 1, r + 1, t + [λ−1], t̄)τ(s+ 1, r, t, t̄)

− µ

λ− µ

τ(s+ 1, r, t + [µ−1], t̄)τ(s+ 1, r + 1, t, t̄)
τ(s+ 1, r + 1, t + [µ−1], t̄)τ(s+ 1, r, t, t̄)

+
1
λµ

τ(s+ 2, r + 1, t + [λ−1] + [µ−1], t̄)τ(s, r + 1, t, t̄)
τ(s+ 1, r + 1, t + [λ−1], t̄)τ(s+ 1, r + 1, t + [µ−1], t̄)

τ(s, r, t, t̄)τ(s+ 1, r + 1, t, t̄)
τ(s, r + 1, t, t̄)τ(s+ 1, r, t, t̄)

.

We can rewrite both hand sides as

LHS = exp
((
eD(λ) − 1

)(
eD(µ) − 1

)
log τ(s+ 1, r + 1)

)
and

RHS =
λ

λ− µ
exp

((
e−∂r − 1

)(
eD(λ) − 1

)
log τ(s+ 1, r + 1)

)
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− µ

λ− µ
exp

((
e−∂r − 1

)(
eD(µ) − 1

)
log τ(s+ 1, r + 1)

)
+

1
λµ

exp
((
e∂s+D(λ) − 1

)(
e∂s+D(µ) − 1

)
e−∂s log τ(s+ 1, r + 1)

)
× exp

((
e−∂r − 1

)(
e−∂s − 1

)
log τ(s+ 1, r + 1)

)
.

Now rescale the variables s, r, t, t̄ as

s→ ~−1s, r → ~−1r, t → ~−1t, t̄ → ~−1t̄. (5.2)

The last equation thereby becomes an equation for the rescaled tau function τ~, in which the
derivatives are rescaled as

∂s → ~∂s, ∂r → ~∂r, D(z) → ~D(z), D̄(z) → ~D̄(z). (5.3)

Under the quasi-classical ansatz (5.1), we can take the limit of this equation as ~ → 0. The
outcome is the equation

eD(λ)D(µ)F =
λe−∂rD(λ)F − µe−∂rD(µ)F

λ− µ
+

1
λµ
e(∂s+D(λ)(∂s+D(µ))F+∂r∂sF . (5.4)

In much the same way, we can derive the following equations from the other differential Fay
identities (4.2)–(4.6):

eD(λ)D(µ)F =
λe−∂sD(λ)F − µe−∂sD(µ)F

λ− µ
+

1
λµ
e(∂r+D(λ))(∂r+D(µ))F+∂r∂sF , (5.5)

eD̄(λ)D̄(µ)F =
λ−1e−∂rD̄(λ)F − µ−1e−∂rD̄(µ)F

λ−1 − µ−1
+ λµe(−∂s+D̄(λ))(−∂s+D̄(µ))F−∂r∂sF , (5.6)

eD̄(λ)D̄(µ)F =
λ−1e∂sD̄(λ)F − µ−1e∂sD̄(µ)F

λ−1 − µ−1
+ λµe(∂r+D̄(λ))(∂r+D̄(µ))F−∂r∂sF , (5.7)

eD(λ)D̄(µ)F = e−(∂r+∂s)D̄(µ)F − λµe−(∂rD(λ)+∂sD̄(µ)+∂r∂s)F

+ λµe(−∂s+D(λ))(−∂s+D̄(µ))F−(∂r+∂s)∂sF , (5.8)

eD(λ)D̄(µ)F = 1− µ

λ
e∂s(∂s+D(λ)−D̄(µ))F +

µ

λ
e(∂r+D(λ))(∂r+D̄(µ))F . (5.9)

The six dispersionless Hirota equations can be divided to two distinct sets {(5.5), (5.7), (5.9)}
and {(5.4), (5.6), (5.8)}. The first set of equations may be thought of as analogues of the dis-
persionless Hirota equations of the Toda hierarchy [22, 24, 25, 26]. The only difference is the
presence of the last term on the right hand side of each equation. The second set of equations
have no counterpart in the Toda hierarchy.

We can use (5.4), (5.6) and (5.8) to eliminate eD(λ)D(µ)F , eD̄(λ)D̄(µ)F and eD(λ)D̄(µ)F from
(5.5), (5.7) and (5.9). This leads to the following remarkable observation.

Theorem 6. The dispersionless Hirota equations (5.4)–(5.9) imply the following equations:

λ
(
e−∂sD(λ)F − e−∂rD(λ)F

)
+ λ−1

(
e∂s(∂r+∂s+D(λ))F − e∂r(∂r+∂s+D(λ))F

)
= (∂r − ∂s)∂t1F, (5.10)

λ−1
(
e∂sD̄(λ)F − e−∂rD̄(λ)F

)
+ λ
(
e−∂s(∂r−∂s+D̄(λ))F − e∂r(∂r−∂s+D̄(λ))F

)
= (∂r + ∂s)∂t̄1F, (5.11)

(∂r + ∂s)∂t̄1F = e−∂r∂sF (∂r − ∂s)∂t1F. (5.12)
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Proof. We can rewrite (5.4) and (5.5) as

eD(λ)D(µ)F

(
1− 1

λµ
e∂s(∂r+∂s+D(λ)+D(µ))F

)
=
λe−∂rD(λ)F − µe−∂rD(λ)F

λ− µ
,

eD(λ)D(µ)F

(
1− 1

λµ
e∂r(∂r+∂s+D(λ)+D(µ))F

)
=
λe−∂sD(λ)F − µe−∂sD(µ)F

λ− µ
.

Eliminating eD(λ)D(µ)F from these equations yields the equation(
1− 1

λµ
e∂s(∂r+∂s+D(λ)+D(µ))F

)(
λe−∂sD(λ)F − µe−∂sD(µ)F

)
=
(

1− 1
λµ
e∂r(∂r+∂s+D(λ)+D(µ))F

)(
λe−∂rD(λ)F − µe−∂rD(µ)F

)
,

which can be expanded as

λe−∂sD(λ)F − µe−∂sD(µ)F + λ−1e∂s(∂r+∂s+D(λ))F − µ−1e∂s(∂r+∂s+D(µ))F

= λe−∂rD(λ)F − µe−∂rD(µ)F + λ−1e∂r(∂r+∂s+D(λ))F − µ−1e∂r(∂r+∂s+D(µ))F .

We can separate λ-dependent and µ-dependent terms to each side of the equation as

λ
(
e−∂sD(λ)F − e−∂rD(λ)F

)
+ λ−1

(
e∂s(∂r+∂s+D(λ))F − e∂r(∂r+∂s+D(λ))F

)
= µ

(
e−∂sD(µ)F − e−∂rD(µ)F

)
+ µ−1

(
e∂s(∂r+∂s+D(µ))F − e∂r(∂r+∂s+D(µ))F

)
.

Therefore both hand sides of the last equation are independent of λ and µ. Letting λ, µ → ∞,
we can readily see that this quantity is equal to (∂r − ∂s)∂t1F . Thus we obtain (5.10). In much
the same way, we can derive (5.11) from (5.6) and (5.7). If we start from (5.8) and (5.9), we
end up with the equation

µ−1
(
e∂sD̄(µ)F − e−∂rD̄(µ)F

)
+ µ

(
e−∂s(∂r−∂s+D̄(µ))F − e∂r(∂r−∂s+D̄(µ))F

)
= e−∂r∂sF

(
λ
(
e−∂sD(λ)F − e−∂rD(λ)F

)
+ λ−1

(
e∂s(∂r+∂s+D(λ))F − e∂r(∂r+∂s+D(λ))F

))
.

By (5.10) and (5.11), this equation reduces to (5.12). �

It is easy to see from this proof that the converse is also true. Namely, if (5.5), (5.7) and (5.9)
holds, the other three dispersionless Hirota equations (5.4), (5.6) and (5.8) can be recovered
from (5.10), (5.11) and (5.12). Thus we are led to the following conclusion.

Corollary 4. The dispersionless Hirota equations (5.4)–(5.9), can be reduced to the coupled
system of the two sets of equations {(5.5), (5.7), (5.9)} and {(5.10), (5.11), (5.12)}.

Thus the dispersionless Hirota equations of the Pfaff–Toda hierarchy can be reduced to two
sets of equations that have quite different appearance and nature. Among the second set of
equations, the last equation (5.12) is nothing but the dispersionless limit of (2.5). The other
two equations (5.10) and (5.11) appear to be more mysterious. As it turns out below, they are
related to special auxiliary linear equations for the wave functions.

5.2 Elliptic spectral curve

Let us examine (5.10), (5.11) and (5.12) in more detail. Substituting λ→ z, and applying (5.12)
to the term on the right hand side of (5.11), we can rewrite (5.10) and (5.11) as

z
(
e−∂sD(z)F − e−∂rD(z)F

)
+ z−1

(
e∂s(∂r+∂s+D(z))F − e∂r(∂r+∂s+D(z))F

)
= (∂r − ∂s)∂t1F,
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z−1
(
e∂sD̄(z)F− e−∂rD̄(z)F

)
+ z
(
e−∂s(∂r−∂s+D̄(z))F− e∂r(∂r−∂s+D̄(z))F

)
= e−∂r∂sF(∂r− ∂s)∂t1F.

Actually, these two equations are equivalent to the set of three equations (5.10), (5.11) and (5.12),
because letting z → 0 in the second equation yields (5.12), and this enables one to recover (5.11)
as well.

A clue of the subsequent consideration is to introduce the auxiliary functions

S(z) = ξ(t, z) + (s+ r) log z −D(z)F,

S̄(z) = ξ(t̄, z−1) + (s− r) log z + ∂sF − D̄(z)F.

We can thereby rewrite these equations into the “Hamilton–Jacobi” form

e∂rS(z) = e∂sS(z) + (∂s − ∂r)∂t1F + e∂s(∂r+∂s)F e−∂sS(z) − e∂r(∂r+∂s)F e−∂rS(z), (5.13)

e∂rS̄(z) = e∂sS̄(z) + (∂s − ∂r)∂t1F + e∂s(∂r+∂s)F e−∂sS̄(z) − e∂r(∂r+∂s)F e−∂rS̄(z). (5.14)

These equations imply that the exponentiated gradient vectors (e∂sS(z), e∂rS(z)) and (e∂sS̄(z),
e∂rS̄(z)) of the two S-functions on the (s, r) plane satisfy the same algebraic equation

Q = P + (∂s − ∂r)∂t1F + e∂s(∂r+∂s)FP−1 − e∂r(∂r+∂s)FQ−1. (5.15)

This equation defines a curve of genus one on the (P,Q) plane.
We now argue that this equation can be identified with the characteristic equation of a set

of auxiliary linear equations. In other words, this curve is indeed a “spectral curve”.
The functions S(z) and S̄(z) may be thought of as the phase functions of the quasi-classical

(WKB) ansatz

Ψ1(z) = e~−1S(z)+O(1), Ψ̄1(z) = e~−1S̄(z)+O(1) (~ → 0)

of the wave functions Ψ1(z) and Ψ̄1(z). Consequently, it will be natural to expect that (5.13)
and (5.14) are Hamilton–Jacobi equations of linear equations of the form

e~∂rΦ1(z) =
(
e~∂s + a+ be−~∂s + ce−~∂r

)
Φ1(z) (5.16)

for Φ1(z) = Ψ1(z), Ψ̄1(z), and that the coefficients have the quasi-classical limit

lim
~→0

a = (∂s − ∂r)F, lim
~→0

b = e∂s(∂r+∂s)F , lim
~→0

c = −e∂r(∂r+∂s)F

so that (5.15) can be interpreted as the characteristic equation of (5.16).
We can indeed derive such linear equations from (3.12). To simplify notations, let us consider

the case where ~ = 1; one can readily transfer to the ~-dependent setup of the quasi-classical
ansatz by rescaling the variables and derivative as (5.2) and (5.3). Written in terms of compo-
nents, (3.12) consists of the linear equations

e∂rΦ1(z) = AΦ1(z) +BΦ2(z), e∂rΦ2(z) = CΦ1(z)

for the four pairs Φα(z) = Ψα(z),Ψ∗
α(z), Ψ̄α(z), Ψ̄∗

α(z) (α = 1, 2), where

A = e∂s +
(

log
τ(s+ 1, r)
τ(s, r + 1)

)
t1

+
τ(s+ 1, r + 1)τ(s− 1, r)

τ(s, r + 1)τ(s, r)
e−∂s ,

B = −τ(s+ 1, r + 1)
τ(s, r)

e∂s , C =
τ(s− 1, r)
τ(s, r + 1)

e−∂s .
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The second equation implies that Φ1(z) and Φ2(z) are connected by the relation

Φ2(z) = e−∂rCΦ1(z) =
τ(s− 1, r − 1)

τ(s, r)
e−∂s−∂rΦ1(z),

which one can see from the definition (3.1) and (3.2) of the wave functions as well. Using this
relation, we can eliminate Φ2(z) from the first equation and obtain the equation

e∂rΦ1(z) = (A+Be−∂rC)Φ1(z).

After some algebra, this equation boils down to (5.16). Moreover, though we omit details, the
coefficients turn out to take such a form as

a =
(

log
τ(s+ 1, r)
τ(s, r + 1)

)
t1

, b =
τ(s+ 1, r + 1)τ(s− 1, r)

τ(s, r + 1)τ(s, r)
,

c = −τ(s+ 1, r + 1)τ(s, r − 1)
τ(s+ 1, r)τ(s, r)

.

It is easy to see that these coefficients do have the anticipated quasi-classical limit.
The other auxiliary linear equations (3.13) and (3.14), too, can be converted to scalar linear

equations of the form

∂tnΦ1(z) = (An +Bne
−∂rC)Φ1(z), ∂t̄nΦ1(z) = (Ān + B̄ne

−∂rC)Φ1(z).

Note that the 2D difference operators

Kn(e∂s , e∂r) = An +Bne
−∂rC, K̄n(e∂s , e∂r) = Ān + B̄ne

−∂rC

show up on the right hand sides of these equations. Consequently, the S-functions S(z) and S̄(z)
satisfy the Hamilton–Jacobi equations

∂tnS(z) = Kn

(
e∂sS(z), e∂rS(z)

)
, ∂t̄nS(z) = K̄n

(
e∂sS(z), e∂rS(z)

)
, (5.17)

∂tnS̄(z) = Kn

(
e∂sS̄(z), e∂rS̄(z)

)
, ∂t̄nS̄(z) = K̄n

(
e∂sS̄(z), e∂rS̄(z)

)
. (5.18)

Those Hamilton–Jacobi equations and the constraints (5.13) and (5.14) may be thought of as
defining “quasi-classical deformations” [28, 29] of the spectral curve (5.15).

5.3 Comparison with DKP hierarchy

Let us compare the foregoing results with the case of the DKP hierarchy [1, 27].
The situation of the DKP hierarchy is similar to the KP hierarchy rather than the Toda

hierarchy. The role of the difference Fay identities (4.1)–(4.6) are played by the differential Fay
identities

τ(r, t + [λ−1] + [µ−1])τ(r, t)
τ(r, t + [λ−1])τ(r, t + [µ−1])

− 1
λ2µ2

τ(r + 1, t + [λ−1] + [µ−1])τ(r − 1, t)
τ(r, t + [λ−1])τ(r, t + [µ−1])

= 1− 1
λ− µ

∂t1 log
τ(r, t + [λ−1])
τ(r, t + [µ−1])

, (5.19)

λ2

λ− µ

τ(r − 1, t + [λ−1])τ(r, t + [µ−1])
τ(r, t + [λ−1] + [µ−1])τ(r − 1, t)

− µ2

λ− µ

τ(r, t + [λ−1])τ(r − 1, t + [µ−1])
τ(r, t + [λ−1] + [µ−1])τ(r − 1, t)

= λ+ µ− ∂t1 log
τ(r, t + [λ−1] + [µ−1])

τ(r − 1, t)
. (5.20)
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In the dispersionless limit, they turn into the dispersionless Hirota equations

eD(λ)D(µ)F − λ−2µ−2e(∂r+D(λ))(∂r+D(µ)F = 1− ∂t1(D(λ)−D(µ))F
λ− µ

, (5.21)

λ2

λ− µ
e−D(λ)(∂r+D(µ))F− µ2

λ− µ
e−(∂r+D(λ))D(µ)F = λ+ µ− ∂t1(∂r +D(λ) +D(µ))F (5.22)

for the F -function F (r, t). The first equation (5.21) resembles the dispersionless Hirota equation
of the KP hierarchy.

It is convenient to introduce the S-function

S(z) = ξ(t, z) + 2r log z −D(z)F

at this state. We can thereby rewrite (5.21) and (5.22) as

eD(λ)D(µ)F
(
1− e∂

2
rF−∂rS(λ)−∂rS(µ)

)
=
∂1S(λ)− ∂1S(µ)

λ− µ
,

e−D(λ)D(µ)F

λ− µ

(
e∂rS(λ) − e∂rS(µ)

)
= ∂t1S(λ) + ∂t1S(µ)− ∂r∂t1F

and eliminate eD(λ)D(µ)F from these two equations. This leads to the equality

(∂t1S(λ))2 − (∂t1∂rF )(∂t1S(λ))− e∂rS(λ) − e∂
2
rF−∂rS(λ)

= (∂t1S(µ))2 − (∂t1∂rF )(∂t1S(µ))− e∂rS(µ) − e∂
2
rF−∂rS(µ),

hence both hand sides are independent of λ and µ. Letting λ, µ → ∞, we can determine this
quantity explicitly. Thus we obtain the equation

(∂t1S(z))2 − (∂t1∂rF )(∂t1S(z))− e∂rS(z) − e∂
2
rF−∂rS(z)

= −2∂2
t1F +

1
2
∂t2∂rF − 1

2
(∂t1∂rF )2. (5.23)

In other words, the partially exponentiated gradient vector (∂t1S(z), e∂rS(z)) of the S-function
satisfies the algebraic equation

p2 − (∂t1∂rF )p−Q− e∂
2
rFQ−1 = −2∂2

t1F +
1
2
∂t2∂rF − 1

2
(∂t1∂rF )2 (5.24)

of an elliptic curve on the (p,Q) plane. This curve was studied by Kodama and Pierce [27] as
an analogue of the spectral curve of the 1D Toda hierarchy.

(5.23) and (5.24) are the Hamilton–Jacobi and characteristic equations of a linear equation
of the form

e~∂rΦ1(z) =
(
~2∂2

t1 + ~a∂t1 + b+ ce−~∂r
)
Φ1(z). (5.25)

We can derive this equation from one of auxiliary linear equations as follows. Let us again
consider the case where ~ = 1. As in the case of the Pfaff–Toda hierarchy, we can eliminate
Ψ2(z) and Ψ∗

2(z) from the auxiliary linear equation (A.7) by the relation

Φ2(z) =
τ(r − 1)
τ(r)

e−∂rΦ1(z)
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that holds for Φα(z) = Ψα(z),Ψ∗
α(z) (α = 1, 2). The matrix equation (A.7) thereby reduces to

a scalar equation of the form (5.25) for Φ1(z) = Ψ1(z),Ψ∗
1(z). The coefficients a, b, c can be

determined explicitly as

a = −
(

log
τ(r + 1)
τ(r)

)
t1

, c = −τ(r + 1)τ(r − 1)
τ(r)2

,

b =
τ(r + 1)t1t1 − τ(r + 1)t2

2τ(r + 1)
− τ(r)t1t1 − τ(r)t2

2τ(r)

−
(

log
τ(r + 1)
τ(r)

)
t1

(log τ(r))t1 + 2(log τ(r))t1t1 . (5.26)

Rescaling the variables as (5.2), one can correctly recover the coefficients of (5.23) and (5.24)
in the quasi-classical limit:

lim
~→0

a = −∂t1∂rF, lim
~→0

c = −e∂2
rF , lim

~→0
b = −1

2
∂t2∂rF +

1
2
(∂t1∂rF )2 + 2∂2

t1F.

6 Conclusion

We have thus obtained the following equations that characterize various aspects of the Pfaff–
Toda hierarchy:

• the algebraic constraints (3.6), (3.7) and the evolution equations (3.8), (3.10), (3.11) of
the dressing operators,

• the auxiliary linear equations (3.12)–(3.14),

• the difference Fay identities (4.1)–(4.6),

• the generating functional expression (4.7)–(4.10) of the auxiliary linear equations (3.13)
and (3.14),

• the dispersionless Hirota equations, (5.4)–(5.9),

• the defining equation (5.15) of the elliptic spectral curve,

• the Hamilton–Jacobi equations (5.13), (5.14), (5.17) and (5.18).

All these equations have counterparts in the DKP hierarchy. We have thus demonstrated that
the Pfaff–Toda hierarchy is indeed a Toda version of the DKP hierarchy (or a Pfaffian version
of the Toda hierarchy).

Actually, this is not the end of the story. Let us note a few open problems.
Firstly, although the other auxiliary linear equations (3.13) and (3.14) have been encoded to

the difference Fay identities, the status of the remaining equation (3.12) is still obscure. Since
its counterpart in the dispersionless limit are (5.13) and (5.14), and these equations are obtained
from the dispersionless Hirota equations, it seems likely that (3.12), too, can be derived from
the difference Fay identities. Unfortunately, we have been unable to find a direct proof. If this
conjecture is true, it leads to an important conclusion that the difference Fay identities are,
on the whole, equivalent to the Pfaff–Toda hierarchy itself, as it is indeed the case for the KP
hierarchy [1, 33] and the Toda hierarchy [23].

Secondly, very little is known about special solutions of the Pfaff–Toda hierarchy. Of course
one can freely generate solutions by the fermionic formula. Finding an interesting class of
solutions is, however, a nontrivial problem. A possible strategy will be to seek, again, for
analogy with the DKP hierarchy.
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A Auxiliary linear problem of DKP hierarchy

The DKP hierarchy has a discrete variable r and a set of continuous variables t = (t1, t2, . . .).
The Tau function τ = τ(r, t) satisfies the bilinear equation∮

dz

2πi
z2r′−2reξ(t

′−t,z)τ(r′, t′ − [z−1])τ(r, t + [z−1])

+
∮

dz

2πi
z2r−2r′−4eξ(t−t′,z)τ(r′ + 1, t′ + [z−1])τ(r − 1, t− [z−1]) = 0. (A.1)

This bilinear equation can be converted to the Hirota form

∞∑
n=0

hn(−2a)hn+2r′−2r+1(D̃t)e〈a,Dt〉τ(r, t) · τ(r′, t)

+
∞∑

n=0

hn(2a)hn+2r−2r′−3(−D̃t)e〈a,Dt〉τ(r − 1, t) · τ(r′ + 1, t) = 0

with an infinite set of arbitrary constants a = (a1, a2, . . .). This is a generating functional
expression of an infinite number of Hirota equations. The differential Fay identities (5.19)
and (5.20) can be derived by differentiating the bilinear equation by t′1 and specializing the
variables as follows:

1) t′ = t + [λ−1] + [µ−1], r′ = r;

2) t′ = t + [λ−1]− [µ−1], r′ = r − 1.

The bilinear equation (A.1) of the tau function leads to a set of bilinear equations for the
wave functions

Ψ1(r, t, z) = z2reξ(t,z) τ(r, t− [z−1])
τ(r, t)

,

Ψ2(r, t, z) = z2r−2eξ(t,z) τ(r − 1, t− [z−1])
τ(r, t)

,

Ψ∗
1(r, t, z) = z−2r−2e−ξ(t,z) τ(r + 1, t + [z−1])

τ(r, t)
,

Ψ∗
2(r, t, z) = z−2re−ξ(t,z) τ(r, t + [z−1])

τ(r, t)
.

These bilinear equations can be cast into the matrix form∮
dz

2πi
Ψ2×2(r′, t′, z) tΨ∗

2×2(r, t, z) = 0, (A.2)

where

Ψ2×2(r, t, z) =
(

Ψ1(r, t, z) Ψ∗
1(r, t, z)

Ψ2(r, t, z) Ψ∗
2(r, t, z)

)
, Ψ∗

2×2(r, t, z) =
(

Ψ∗
1(r, t, z) Ψ1(r, t, z)

Ψ∗
2(r, t, z) Ψ2(r, t, z)

)
.

The wave functions are associated with dressing operators of the form

W1 = 1 +
∞∑

n=1

w1n∂
−n
t1
, V1 =

∞∑
n=0

v1n(−∂t1)
−n−2,

W2 =
∞∑

n=0

w2n∂
−n−2
t1

, V2 = 1 +
∞∑

n=1

v2n(−∂t1)
−n.
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The coefficients are determined by Laurent expansion of the tau-quotient in the wave functions
as

τ(r, t− [z−1])
τ(r, t)

= 1 +
∞∑

n=1

w1nz
−n,

τ(r + 1, t + [z−1])
τ(r, t)

=
∞∑

n=0

v1nz
−n,

τ(r − 1, t− [z−1])
τ(r, t)

=
∞∑

n=0

w2nz
−n,

τ(r, t + [z−1])
τ(r, t)

= 1 +
∞∑

n=1

v2nz
−n.

The wave functions are thereby expressed as

Ψα(r, t, z) = Wαz
2reξ(t,z), Ψ∗

α(r, t, z) = Vαz
−2re−ξ(t,z)

for α = 1, 2.
Various equations for the dressing operators can be derived from this bilinear equation.

A technical clue is an analogue of (3.4) for pseudo-differential operators [30, 31, 32]. For a pair
of pseudo-differential operators of the form

P =
∞∑

n=−∞
pn(x)∂n

x , Q =
∞∑

n=−∞
qn(x)∂n

x ,

let Ψ(x, z) and Φ(x, z) denote the wave functions

Ψ(x, z) = Pexz =
∞∑

n=−∞
pn(x)znexz, Φ(x, z) = Qe−xz =

∞∑
n=−∞

qn(x)(−z)ne−xz.

Moreover, let P ∗ denote the formal adjoint

P ∗ =
∞∑

n=−∞
(−∂x)npn(x).

Then one has the identity∮
dz

2πi
Ψ(x′, z)Φ(x, z) =

∞∑
k=0

(PQ∗)−k−1
(x′ − x)k

k!
= −

∞∑
k=0

(QP ∗)−k−1
(x− x′)k

k!
, (A.3)

where ( )−k−1 stands for the coefficient of ∂−k−1
x of a pseudo-differential operator.

With the aid of this formula (A.3), one can derive the algebraic constraint(
W1 V1

W2 V2

)∗
=
(

0 1
−1 0

)(
W1 V1

W2 V2

)−1( 0 −1
1 0

)
, (A.4)

the discrete evolution equation(
W1(r + 1) V1(r + 1)
W2(r + 1) V2(r + 1)

)(
∂2

t1 0
0 ∂−2

t1

)
=
(
A B
C 0

)(
W1 V1

W2 V2

)
(A.5)

and the continuous evolution equations(
W1,tn +W1∂t1 V1,tn − V2(−∂t1)

n

W2,tn +W2∂t1 V2,tn − V2(−∂t1)
n

)
=
(
An Bn

Cn Dn

)(
W1 V1

W2 V2

)
(A.6)
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from the bilinear equation (A.2) of the wave functions. Here A, B, C are differential operators
of the form

A = ∂2
t1 + a∂t1 + b, B = −τ(r + 1)

τ(r)
, C =

τ(r)
τ(r + 1)

,

where a and b are the same quantities as shown in (5.26). An, Bn, Cn are given by

An = (W1∂
n
t1V

∗
2 + V1(−∂t1)

nW ∗
2 )≥0, Bn = −(W1∂

n
t1V

∗
1 + V1(−∂t1)

nW ∗
1 )≥0,

Cn = (W2∂
n
t1V

∗
2 + V2(−∂t1)

nW ∗
2 )≥0, Dn = −(W2∂

n
t1V

∗
1 + V2(−∂t1)

nW ∗
1 )≥0,

where ( )≥0 stands for the projection onto nonnegative powers of ∂t1 . These operators satisfy
the algebraic relations

A∗n = −Dn, B∗n = Bn, C∗n = Cn, D∗
n = −An,

which may be thought of as Lie algebraic counterparts of the constraint (A.4) for the dressing
operators. This algebraic structure is generalized by Kac and van de Leur [3] to multicomponent
hierarchies. Let us mention that these algebraic relations among An, Bn, Cn, Dn are also derived
by Kakei [9] in a inverse scattering formalism.

The evolution equations (A.5) and (A.6) can be readily converted to the evolution equations

e∂r

(
Ψ1 Ψ∗

1

Ψ2 Ψ∗
2

)
=
(
A B
C 0

)(
Ψ1 Ψ∗

1

Ψ2 Ψ∗
2

)
(A.7)

and

∂tn

(
Ψ1 Ψ∗

1

Ψ2 Ψ∗
2

)
=
(
An Bn

Cn Dn

)(
Ψ1 Ψ∗

1

Ψ2 Ψ∗
2

)
, (A.8)

for the wave functions.
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