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Abstract. We study non-Hermitian quantum mechanics in the presence of a minimal length.
In particular we obtain exact solutions of a non-Hermitian displaced harmonic oscillator and
the Swanson model with minimal length uncertainty. The spectrum in both the cases are
found to be real. It is also shown that the models are η pseudo-Hermitian and the metric
operator is found explicitly in both the cases.
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1 Introduction

In recent years there have been growing interest on quantum systems with a minimal length
[1, 2, 3, 4]. There are quite a few reasons for this. For example, the concept of minimal length
has found applications in quantum gravity [5], perturbative string theory [6], black holes [7] etc.
Exact as well as perturbative solutions of various non relativistic quantum mechanical systems,
e.g., harmonic oscillator [2, 3, 8, 9, 10], Coulomb problem [11, 12, 13, 14], Pauli equation [15]
etc., have been obtained in the presence of minimal length. Exact solutions of relativistic models
like the Dirac oscillator have also been obtained [16, 17]. A novel approach based on momentum
space supersymmetry was also used to obtain exact solutions of a number of problems [16, 18, 19].

On the other hand, since the work of Bender et al. [20] non-Hermitian quantum systems
have been studied extensively over the past few years1. Many of these models, especially the
PT symmetric and the η pseudo-hermitian ones admit real spectrum in spite of being non-
Hermitian. Recently some possible applications of non-Hermitian quantum mechanics have also
been suggested [21, 22]. However all these studies have been made in the context of point
particles. Here our aim is to examine non-Hermitian quantum mechanics in the presence of
a minimal length. In particular we shall obtain exact solutions of a displaced harmonic oscillator
with a complex coupling and the Swanson model [23]. It will be shown that in both the cases the
spectrum is entirely real (subject to the parameters in the later case satisfying some constraints
depending on the minimal length) and both the models are in fact η pseudo-Hermitian. Explicit
representation of the metric will also be obtained in both the cases. The organization of the
paper is as follows. In Section 2 we present a few results concerning quantum mechanics with
minimal length uncertainty. In Section 3 we present exact solutions of the displaced harmonic

?This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Me-
thods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html

1See http://gemma.ujf.cas.cz/∼znojil/conf/.
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oscillator problem. Section 4 contains exact solutions of the Swanson model. In Section 5 we
discuss η pseudo-Hermiticity of the models and finally Section 6 is devoted to a discussion.

2 Quantum mechanics with minimal length uncertainty

In one dimensional quantum mechanics with a minimal length the canonical commutation rela-
tion between x̂ and p̂ is modified and reads [2]

[x̂, p̂] = i~
(
1 + βp2

)
, (1)

where β is a small parameter. A representation of x̂ and p̂ which realizes (1) is given by [2]

x̂ = i~
[(

1 + βp2
) ∂
∂p

+ γp

]
, p̂ = p. (2)

From (1) and (2) it can be shown that

∆x̂∆p̂ ≥ ~
2
[
1 + β(∆p̂)2

]
, (3)

where in obtaining (3) we have taken 〈p〉 = 0. Thus the standard Heisenberg uncertainty relation
(corresponding to β → 0) is modified and it follows that there is UV/IR mixing. Furthermore
from (3) it follows that there also exist a minimal length given by

(∆x̂)min = ~
√
β.

In the space where position (x̂) and momentum (p̂) are given by (2) the associated scalar product
is defined by

〈φ(p)|ψ(p)〉 =
∫

φ∗(p)ψ(p)

(1 + βp2)1−
γ
β

dp. (4)

3 Non-Hermitian displaced harmonic oscillator

The Schrödinger equation for the displaced oscillator is given by

Hψ(p) = Eψ(p), H =
1
2µ
p̂2 +

1
2
µω2x̂2 + iλx̂, (5)

where λ is a real constant. Now using (4) it can be shown that

H 6= H†,

so that H is non-Hermitian. Then we use (2) to write the Schrödinger equation (5) in momentum
space as[

−f(p)
d2

dp2
+ g(p)

d

dp
+ h(p)

]
ψ(p) = εψ(p), (6)

where f(p), g(p), h(p) and ε are given by

f(p) =
(
1 + βp2

)2
, g(p) = −2

(
1 + βp2

) [
(γ + β)p+

λ

µ~ω2

]
,

h(p) =
[

1
~2µ2ω2

− γ(β + γ)
]
p2 − 2λγ

~µω2
p, ε =

2E
~2µω2

+ γ. (7)
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It is now necessary to solve equation (6). To this end we perform a simultaneous change of wave
function as well as the independent variable:

ψ(p) = ρ(p)φ(p), q =
∫

1√
f(p)

dp, (8)

where

ρ(p) = e
∫

χ(p) dp, χ(p) =
f ′ + 2g

4f
. (9)

Using the transformation (8) we obtain from (6)[
− d2

dq2
+ V (q)

]
φ(q) = εφ(q), (10)

where V (q) is given by

V (q) =

[
4g2 + 3f ′2 + 8gf ′

16f
− f ′′

4
− g′

2
+ h(p)

]
q

.

It is easy to see that (10) is a standard Schrödinger equation in the variable q and V (q) is the
corresponding potential. In the present case we obtain on using (7)

q =
1√
β

tan−1
(√

βp
)
, − π

2
√
β
< q <

π

2
√
β
,

V (q) =
sec2(

√
βq)

~2µ2ω2β
+

λ2

~2µ2ω4
− 1

~2µ2ω2β
+ γ. (11)

The potential V (q) given above is a standard solvable potential. The energy eigenvalues and
the wave functions are given by [24]

εn =
(
A+ n

√
β

)2 +
λ2

~2µ2ω4
− 1

~2µ2ω2β
+ γ, n = 0, 1, 2, . . . ,

φn(q) = Nn

[
cos

(
q
√
β

)] A√
βP

(
A√
β
− 1

2
, A√

β
− 1

2

)
n

(
sin

(
q
√
β

))
,

A =

√
β +

√
β + 4

~2µ2ω2β

2
,

where Nn are normalization constants and P (r,s)
n (z) denotes Jacobi polynomials.

So from (7) and (8) we finally obtain (n = 0, 1, 2, . . . )

En = ~ω

[
β~ωµ

2

(
n2 + n+

1
2

)
+

(
n+

1
2

) √
1 +

β2~2ω2µ2

4

]
+

λ2

2µω2
,

ψn(p) = Nne
−λ tan−1(

√
βp)

~µω2√β
(
1 + βp2

)−(
γ
2β

+ A√
β

)
P

(
A√
β
− 1

2
, A√

β
− 1

2

)
n

( √
βp

1 + βp2

)
. (12)

Thus we find that the spectrum is completely real and for λ = 0 it reduces to the known
results [2, 3, 9, 10].
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4 Swanson model

We now consider another type of model, namely, the Swanson model with the Hamiltonian given
by [23]

H = ωa†a+ λa2 + δa†
2
+
ω

2
, (13)

where λ 6= δ are real numbers and a, a† are annihilation and creation operators of the standard
harmonic oscillator. Although the above Hamiltonian involves no complex coupling it is non-
Hermitian and has real eigenvalues provided (ω2 − 4λδ) > 0 [23].

We shall now obtain exact solutions of the Swanson model in the presence of a minimal
length. In this case the operators a, a† are defined exactly as in the standard case except that x̂
and p̂ are given by (2):

a =
1√

2m~ω
(p̂− iωx̂) , a† =

1√
2m~ω

(p̂+ iωx̂) .

Now using (4) it can be shown that H 6= H† so that the Hamiltonian (13) is non-Hermitian.
In order to obtain the spectrum we now write the eigenvalue equation Hψ(p) = Eψ(p) in

momentum space as

Hψ(p) =
[
−f(p)

d2

dp2
+ g(p)

d

dp
+ h(p)

]
ψ(p) = εψ(p), (14)

where f(p), g(p), h(p) and ε are now given by

f(p) =
(
1 + βp2

)2
,

g(p) = −2
[

2(δ − λ)
~mω(ω − λ− δ)

+ 2(β + γ)
] (

1 + βp2
)
p,

h(p) =
[
ω + λ+ δ

ω − λ− δ

1
m2~2ω2

− 2γ(δ − λ)
(ω − λ− δ)~mω

− γ2

]
p2

−
[

δ − λ+ ω

~mω(ω − λ− δ)
+ γ

] (
1 + βp2

)
,

ε =
1

~m(ω − λ− δ)

(
2E
ω

− 1
)
.

Now performing the transformation (8) we obtain from (14)[
− d2

dq2
+ V (q)

]
φ(q) = εφ(q),

where the potential is given by

V (q) = ν sec2(
√
βq) +

4λδ − ω2

~2m2ω2β(ω − δ − λ)2
, (15)

ν =
ω2 − 4λδ − ~mω2β(ω − δ − λ)

~2m2ω2β(ω − δ − λ)2
.

Now proceeding as before the energy eigenvalues and the eigenfunctions are found to be

En =
~mωβ(ω − λ− δ)

2

(
n2 + n+

1
2

)
+

(
n+

1
2

) √[
ω − ~mωβ(ω−λ−δ)

2

]2

− 4λδ, (16)

ψn(p) = Nn

(
1 + βp2

)κ
P (s,s)

n

( √
βp

1 + βp2

)
, n = 0, 1, 2, . . . ,
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where

s =

√
1 + 4ν

β

2
, κ =

λ− δ

2~mω
(ω − λ− δ)− γ

2β
−

1 +
√

1 + 4ν
β

2
.

From (16) it follows that the energy is real provided[
ω − ~mωβ(ω − λ− δ)

2

]2

− 4λδ > 0 (17)

and for β = 0 we recover the standard Swanson model constraint mentioned earlier. From (17)
it also follows that for given ω, λ, δ (such that ω − 2

√
λδ > 0) there is a critical value βc such

that for β < βc the energy is real. This value is given by

βc =
2(ω − 2

√
λδ)

m~ω(ω − λ− δ)
. (18)

Thus in this case apart from the standard Swanson model constraint, there is an additional
constraint (18) involving the minimal length parameter.

5 η pseudo-Hermiticity

We recall that a Hamiltonian H is called η pseudo-Hermitian if it satisfies the condition [25]

ηHη−1 = H†,

where η is a Hermitian operator. It may be noted that for η pseudo-Hermitian systems the usual
scalar product (4) can not be used since it may lead to a norm with fluctuating sign. The scalar
product for such systems is defined as

〈φ(p)|ψ(p)〉η = 〈φ(p)|ηψ(p)〉. (19)

Thus in the present case scalar product reads

〈φ(p)|ψ(p)〉η =
∫

ηφ∗(p)ψ(p)

(1 + βp2)1−
γ
β

dp.

Also η pseudo-Hermitian systems are characterized by the fact that their spectrum is either
completely real or the eigenvalues occur in complex conjugate pairs [25]. Since in both the
models considered here the eigenvalues are real it is natural to look for η pseudo-Hermiticity of
the Hamiltonians (5) and (13).

Next we take the metric as

η =
(
1 + βp2

)− γ
β exp

[
−

∫
(χ+ χ∗) dp

]
. (20)

Then using (7) and (9) the metric for the displaced oscillator is found to be

ηho = exp
[

2λ
~µ
√
βω2

tan−1
(√

βp
)]
. (21)

Now it can be shown that (21) satisfies

ηhoHη
−1
ho = H†, (22)
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so that H is η pseudo-Hermitian. It can also be verified that the wave functions (12) are
orthonormal with respect to the scalar product (19):

〈ψm(p)|ψn(p)〉η = δmn. (23)

Similarly using (20) the metric for the Swanson model can be found to be

ηs =
(
1 + βp2

) (δ−λ)
~mωβ(ω−λ−δ) .

It can be verified that the Swanson Hamiltonian (13) satisfies the relations (22) and (23). Thus
the Swanson model is also η pseudo-Hermitian.

6 Discussion

In this paper we have obtained exact solutions of a couple of non-Hermitian models in a space
admitting a minimal length. In the case of the displaced oscillator the spectrum is real irre-
spective of the coupling strength and for the Swanson model the spectrum is real subject to
certain constraints on the parameters. In this context we note that non-Hermiticity can also
be introduced in a model by considering non-Hermitian coordinates, i.e. x̂† 6= x̂. This may be
achieved by replacing x̂→ X̂ = x̂+ iε so that X̂ 6= X̂†. However this case reduces to the model
considered in Section 3 once the parameters ε and λ are suitably related. A second possibility
is to consider replacing γ by iγ in (2). With such a replacement the harmonic oscillator Hamil-
tonian becomes non-Hermitian although the spectrum will still remain real. We would now like
to mention about the symmetry of the problems considered here. Since the transformation (8)
of the variable p to the variable q is invertible, it is expected that the symmetry of the original
problem is the same as that of the corresponding Schrödinger one [26]. Since the underlying
symmetry of the potentials (11) and (15) is a nonlinear algebraic one [27] we expect that the
original problems to have the same symmetry. We feel it would be interesting to investigate the
symmetry structure of these types of models.

Finally in view of the fact that the representation of the position operator in higher dimension
is non trivial we feel it would be interesting to examine non-Hermitian interactions in higher
dimensions and also to examine solvability of Schrödinger equation with other types of non-
Hermitian interactions.
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