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Abstract. Two examples of Diff+S1-invariant closed two-forms obtained from forms on jet
bundles, which does not admit equivariant moment maps are presented. The corresponding
cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra
cohomology class on H2(X(S1)).
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1 Introduction

Let p : E → M be a bundle over a compact, oriented n-manifold M without boundary. In [1] the
forms on the jet bundle of degree greater than the dimension of the base manifold are interpreted
as differential forms on the space of sections by means of the integration map = : Ωn+k(JrE) →
Ωk(Γ(E)) (see Section 2 for the details).

In particular, if α is a closed (n+2)-form on JrE and is invariant under the action of a group G
on E, then =[α] determines a G-invariant closed two-form on Γ(E). In [1] this is applied to
the case of connections on a principal bundle, and in [3] to the case of Riemannian metrics.
Moreover, in those cases canonical moment maps for these forms are obtained. The moment
maps are obtained using the fact that the closed two-forms came from characteristic classes of
an invariant connection, and the moment maps came from the equivariant characteristic classes.

In general, however, if α ∈ Ωn+2(JrE) is closed and G-invariant, then =[α] does not admit
a moment map necessarily because cohomological obstructions could exist (see Section 3 for the
details). In this paper we present two examples where this happens. In the first example we
consider maps S1 → S1 and the action of the orientation preserving diffeomorphisms on S1. We
define an invariant closed two-form on the space A =

{
u : S1 → S1 : u̇(t) 6= 0,∀t ∈ S1

}
, and we

show that the obstruction to the existence of an equivariant moment map is a nontrivial class
in the Lie algebra cohomology of X(S1).

In the second example we consider regular closed plane curves and the same group as in
the first example. The invariant cohomology of the corresponding variational bicomplex is
computed in [8] and a generator of degree 3 appears. Again we show that the closed two-
form corresponding to this form does not admit an equivariant moment map by computing the
corresponding obstruction in the cohomology of the Lie algebra X(S1) of vector fields on S1.
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2 The integration map

Let p : E → M be a bundle over a compact, oriented n-manifold M without boundary, and
let JrE be its r-jet bundle with projections pr : JrE → M , pr,s : JrE → JsE for s < r.
A diffeomorphism φ ∈ DiffE is said to be projectable if there exists φ ∈ DiffM satisfying
φ ◦ p = p ◦φ. We denote by ProjE the space of projectable diffeomorphism of E, and we denote
by Proj+E the subgroup of elements such that φ ∈ Diff+M , i.e., φ is orientation preserving.
The space of projectable vector fields on E is denoted by projE, and can be considered as the
Lie algebra of ProjE. We denote by φ(r) (resp. X(r)) the prolongation of φ ∈ ProjE (resp.
X ∈ projE) to JrE.

Let Γ(E) be the space of global sections of E considered as an infinite dimensional Frechet
manifold (e.g. see [6, Section I.4]). For every s ∈ Γ(E) we have TsΓ(E) ∼= Γ(M, s∗V (E)), where
V (E) denotes the vertical bundle of E. The group ProjE acts naturally on Γ(E) in the following
way. If φ ∈ ProjE, we define φΓ(E) ∈ DiffΓ(E) by φΓ(E)(s) = φ ◦ s ◦ φ−1, for all s ∈ Γ(E). In
a similar way, a projectable vector field X ∈ projE induces a vector field XΓ(E) ∈ X(Γ(E)).

Let jr : M × Γ(E) → JrE, jr(x, s) = jr
xs be the evaluation map. We define a map

= : Ωn+k(JrE) → Ωk(Γ(E)),

by setting

=[α] =
∫

M
(jr)∗ α,

for α ∈ Ωn+k(JrE). If α ∈ Ωk(JrE) with k < n, we set =[α] = 0. The operator = satisfies the
following properties:

Proposition 1 (cf. [1]). For all α ∈ Ωn+k(JrE) the following formulas hold:

1. =[dα] = d=[α].

2. =[(φ(r))∗α] = φ∗Γ(E)=[α], for every φ ∈ Proj+E.

3. =[LX(r)α] = LXΓ(E)
=[α] for every X ∈ projE.

4. =[ιX(r)α] = ιXΓ(E)
=[α] for every X ∈ projE.

If α ∈ Ωn+k(JrE), s ∈ Γ(E), X1, . . . , Xk ∈ TsΓ(E) ∼= Γ(M, s∗V (E)), then

=[α]s(X1, . . . , Xk) =
∫

M
(jrs)∗(ι

X
(r)
k

· · · ι
X

(r)
1

α). (1)

There exists a close relationship between the integration map = and the variational bicomplex,
see [2] for the details.

More generally, if R ⊂ JrE is an open subset and R = {s ∈ Γ(E) : jr
xs ∈ R,∀x ∈ M} is the

space of holomonomic sections of R, then the integration map defines a map = : Ωn+k(R) →
Ωk(R).

3 Cohomological obstructions to the existence of moment maps

Recall the obstructions for the existence of a moment map for an invariant closed two-form, e.g.,
see [7].

Let ω be a closed two-form on M and G a group acting on M and preserving ω. We have an
infinitesimal action g → X(M), X 7→ XM .
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The action is said to be weakly Hamiltonian if for every X ∈ g the form ιXM
ω is exact, i.e.,

if there exists a map µ : g → C∞(M) such that for every X ∈ g we have ιXM
ω = d(µ(X)).

The action is said to be Hamiltonian if there exists a G-equivariant moment map. At the
infinitesimal level, if µ : g → C∞(M) is G-equivariant then we have LXµ = 0 for every X ∈ g

and the converse is true for connected groups.
If the action is weakly Hamiltonian, the obstructions for the action to be Hamiltonian lie in

H2(g): If µ : g → C∞(M) satisfies ιXM
ω = d(µ(X)), we define τ : g× g → R by,

τ(X, Y ) = (LY µ)(X) = µ([X, Y ]) + LYM
(µ(X)).

It can be seen that τ is closed, that the cohomology class on H2(g) is independent of the µ chosen,
and that the cohomology class of τ on H2(g) vanishes if and only if there exists a moment map
µ′ : g → C∞(M) such that ιXM

ω = d(µ′(X)) and LXµ′ = 0 for every X ∈ g. In particular, if
the cohomology class of τ is not zero, then the action is not hamiltonian.

4 Cohomology of smooth vector fields on S1

In our examples we apply the preceding results to the action of the diffeomorphism group of S1.
Hence the Lie algebra cohomology of X(S1) appears. This cohomology was first computed by
Gel’fand and Fuks in [5] and is well known (e.g. see [4]). The continuous cohomology H(X(S1)) is
isomorphic to the tensor product of a polynomial ring with one two-dimensional generator a and
the exterior algebra with one three-dimensional generator b. The two-dimensional generator a
is given by,

a(X, Y ) =
∫

S1

(
df

dt

d2g

dt2
− dg

dt

d2f

dt2

)
dt,

where X = f(t) d
dt , Y = g(t) d

dt .

5 Mappings S1 → S1

In this first example we consider the trivial bundle E = S1 × S1 → S1, whose sections are
mappings u : S1 → S1, and the action of Diff+S1 on E by (φ, (t, u)) 7→ (φ(t), u) for φ ∈ Diff+S1

and (t, u) ∈ S1 × S1.
The coordinates on S1 × S1 are denoted by (t, u) and those on J2E by (t, u, u̇, ü).
If X = f(t) d

dt ∈ X(S1), then its prolongation to J2E is given by,

X(2) = f
∂

∂t
− df

dt
u̇

∂

∂u̇
−

(
d2f

dt2
u̇ + 2

df

dt
ü

)
∂

∂ü
. (2)

We consider the open subset A ⊂ J2E defined by the condition u̇ 6= 0, which is Diff+S1-
invariant, and the form

σ =
1
u̇2

dt ∧ du̇ ∧ dü ∈ Ω3(A).

It is readily seen that σ is closed and that LX(2)σ = 0 for every X ∈ X(S1). By applying the
integration operator = we obtain a Diff+S1-invariant closed two-form ω = =[σ] ∈ Ω2(A) on the
space A of holonomic sections of A

A =
{
u : S1 → S1 : u̇(t) 6= 0, ∀ t ∈ S1

}
.
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In our case, if s : S1 → S1 × S1 is the section corresponding to u : S1 → S1, then TsΓ(A) ∼=
Γ(S1, s∗V (E)) ∼= Γ(S1, TS1).

In local coordinates, if H = h(t) ∂
∂u , then its prolongation to J2E is given by,

H(2) = h
∂

∂u
+

dh

dt

∂

∂u̇
+

d2h

dt2
∂

∂ü
.

Using this expression and formula (2) we obtain the explicit expression of ω:

Proposition 2. If H,K ∈ TsΓ(A) are given by H = h(t) ∂
∂u , K = k(t) ∂

∂u , and u : S1 → S1 then

ωu(H,K) =
∫

S1

(
du

dt

)−2 (
d2h

dt2
dk

dt
− dh

dt

d2k

dt2

)
dt.

Moreover, we have σ = dα, where α = u̇−1dt ∧ dü, and then,

ιX(2)σ = ιX(2)dα = LX(2)α− d(ιX(2)α),

for all X ∈ X(S1). By using (2) we also obtain,

LX(2)α = −d2f

dt2
1
u̇

dt ∧ du̇ = d

(
−df

dt

du̇

u̇

)
,

and hence,

ιX(2)σ = d

(
−df

dt

du̇

u̇
− ιX(2)α

)
= d(ρ(X)),

where

ρ(X) = −df

dt

du̇

u̇
− ιX(2)α.

Accordingly, the action of Diff+S1 on (A, ω) is weakly Hamiltonian with moment map µ(X) =
=[ρ(X)], ∀X ∈ X(S1), as we have

ιXA
ω = ιXA

=[σ] = =[ιX(2)σ] = =[d(ρ(X))] = d (=[ρ(X)]) = d(µ(X)).

The explicit expression of µ is the following:

Proposition 3. If X = f(t) d
dt and u : S1 → S1, then

µ(X)u = −
∫

S1

(
du

dt

)−1 (
f

d3u

dt3
+ 3

df

dt

d2u

dt2
+

d2f

dt2
du

dt

)
dt.

However, the action is not Hamiltonian.

Proposition 4. If X = f(t) d
dt , Y = g(t) d

dt , then

τ(X, Y ) = −
∫

S1

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt.

Proof. From the definition of τ we have

τ(X, Y ) = LYA
µ(X) + µ([X, Y ]) = =[LY (2)ρ(X)] + =[ρ([X, Y ])]

= =[LY (2)ρX) + ρ([X, Y ])].
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From the definition of ρ we have

LY (2)ρ(X) + ρ([X, Y ]) = LY (2)

(
−dx

dt

du̇

u̇

)
− LY (2) (ιX(2)α)

− d

dt

(
f

dg

dt
− f

dg

dt

)
du̇

u̇
− ι[X(2),Y (2)]α.

By using (2) we obtain

LY (2) (ιX(2)α) + ι[X(2),Y (2)]α = ιX(2) (LY (2)α) = −f
d2g

dt2
du̇

u̇
− df

dt

d2g

dt2
dt,

LY (2)

(
−df

dt

du̇

u̇

)
= −g

d2f

dt2
du̇

u̇
+

df

dt

d2g

dt2
dt,

d

dt

(
f

dg

dt
− g

df

dt

)
du̇

u̇
=

(
f

d2g

dt2
− g

d2f

dt2

)
du̇

u̇
,

and hence,

LY (2)ρ(X) + ρ([X, Y ]) = 2
df

dt

d2g

dt2
dt.

As

2
df

dt

d2g

dt2
dt = −

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt + d

(
df

dt

dg

dt

)
,

we finally obtain,

τ(X, Y ) =
∫

S1

2
df

dt

d2g

dt2
dt = −

∫
S1

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt. �

Accordingly to Section 4 the expression obtained in Proposition 5 determines a non-trivial
class on the Lie algebra cohomology of X(S1), and hence 〈τ〉 6= 0 in H2(X(S1)). Hence we obtain
the following

Corollary 1. The action of Diff+S1 on (A, ω) is not Hamitonian, i.e., ω does not admit
a Diff+S1-equivariant moment map.

6 Regular plane curves

Let E = S1 × R2 → S1 be the trivial bundle. Global sections of E are none other than
mappings u : S1 → R2, u(t) = (x(t), y(t)). Coordinates on E are denoted by (t, x, y) and by
(t, x, y, ẋ, ẏ, ẍ, ÿ) the coordinates on J2E.

We consider the open set R ⊂ J2E defined by the condition ẋ2 + ẏ2 6= 0, and corresponding
to the 2-jets of regular curves. The holonomic sections of R constitute the space Reg ⊂ Γ(E)
of closed regular plane curves,

Reg =
{

u : S1 → R2 : |u̇(t)|2 6= 0, ∀ t ∈ S1
}

.

The group DiffS1 acts on E by (t, u) 7→ (φ(t), u), for every φ ∈ DiffS1. This action induces
an action on J2E and clearly R is invariant under this action. If X = f d

dt ∈ X(S1), then its
prolongation to J2E is given by

X(2) = f
∂

∂t
− df

dt
ẋ

∂

∂ẋ
− df

dt
ẏ

∂

∂ẏ
−

(
d2f

dt2
ẋ + 2

df

dt
ẍ

)
∂

∂ẍ
−

(
d2f

dt2
ẏ + 2

df

dt
ÿ

)
∂

∂ÿ
.
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Let us consider the 3-form on R given by

σ = v−2dt ∧ dv ∧ dv̇,

where v =
√

ẋ2 + ẏ2, v̇ = v−1(ẋẍ+ẏÿ). This form appears in [8] as a generator of the cohomology
for the invariant cohomology of the variational bicomplex for regular plane curves. It is easily
checked directly that LX(2)σ = 0 for every X ∈ X(S1) and that dσ = 0.

Let ω = =[σ] ∈ Ω2(R), where = : Ω3(R) → Ω2(Reg) is the integration map. By the properties
of =, we know that ω is a closed and Diff+S1-invariant two-form on Reg.

We apply the results of Section 3 to the – infinite-dimensional – case of the Diff+S1-action
on (Reg, ω).

Let α ∈ Ω2(R) be the form given by, α = v−1dt ∧ dv̇. Clearly, we have dα = σ, and hence
ιX(2)σ = ιX(2)dα = LX(2)α− d(ιX(2)α), for every X ∈ X(S1).

As a direct computation shows, we have

LX(2)v = −df

dt
v, (3)

LX(2) v̇ = −d2f

dt2
v − 2

df

dt
v̇, (4)

and hence

LX(2)α = −d2f

dt2
dt ∧ dv

v
= −d

(
df

dt

)
∧ dv

v
= d

(
−df

dt

dv

v

)
. (5)

Hence we obtain

ιX(2)σ = d

(
−df

dt

dv

v

)
− d(ιX(2)α) = d

(
−df

dt

dv

v
− ιX(2)α

)
.

If we set

ρ(X) = −df

dt

dv

v
− ιX(2)α,

then the action is weakly Hamiltonian, with moment map

µ(X) = =[ρ(X)], ∀X ∈ X(S1).

However, the action is not Hamiltonian.

Proposition 5. If X = f(t) d
dt , Y = g(t) d

dt , then

τ(X, Y ) = −
∫

S1

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt.

Proof. We have

τ(X, Y ) = LYReg
µ(X) + µ([X, Y ]) = =[LY (2)ρ(X)] + =[ρ([X, Y ])]

= =[LY (2)ρ(X) + ρ([X, Y ])],

and

LY (2)ρ(X) + ρ([X, Y ]) = LY (2)

(
−df

dt

dv

v

)
− LY (2) (ιX(2)α)

− d

dt

(
f

dg

dt
− g

df

dt

)
dv

v
− ι[X(2),Y (2)]α.
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By using (3), (4), and (5) we obtain

LY (2) (ιX(2)α) + ι[X(2),Y (2)]α = ιX(2) (LY (2)α) =
d2g

dt2

(
−f

dv

v
− df

dt
dt

)
,

LY (2)

(
−df

dt

dv

v

)
= −d2f

dt2
g
dv

v
+

df

dt

d2g

dt2
dt,

d

dt

(
f

dg

dt
− g

df

dt

)
dv

v
=

(
f

d2g

dt2
− g

d2f

dt2

)
dv

v
,

and hence,

LY (2)ρ(X) + ρ([X, Y ]) = 2
df

dt

d2g

dt2
dt.

As

2
df

dt

d2g

dt2
dt = −

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt + d

(
df

dt

dg

dt

)
,

we finally obtain

τ(X, Y ) =
∫

S1

2
df

dt

d2g

dt2
dt = −

∫
S1

(
d2f

dt2
dg

dt
− df

dt

d2g

dt2

)
dt. �

As we obtain the same result as that in the preceding example, we also obtain the following

Corollary 2. The action of Diff+S1 on (Reg, ω) is not Hamitonian, i.e., ω does not admit
a Diff+S1-equivariant moment map.
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