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1 Introduction and main results

Let VR be a real vector space with a scalar product, and W ⊂ O(VR) be a finite group generated
by reflections. In this paper we construct a family of W -invariants (which we refer to as canonical
invariants) in S(V ), where V = C⊗ VR, by means of Dunkl operators (see [8]). These canonical
invariants form a basis in S(V )W (depending on a continuous parameter c) and, as such, include
both the c-elementary and c-quasiharmonic invariants introduced in our earlier paper [2]. Using
this technique, we prove that for W = Sn the c-elementary invariants are deformations of the
elementary symmetric polynomials in the vicinity of c = 1/n.

Dunkl operators ∇y, y ∈ V ∗, are differential-difference operators first introduced by Charles
Dunkl in [8] and given (for any W ) by:

∇y = ∂y −
∑
s∈S

c(s)
〈y, αs〉

αs
(1− s),

where S is the set of all reflections in W , c : S → C is a W -invariant function on S, and αs ∈ V
is the root of the reflection s. In particular, for W = Sn,

∇y = ∂y − c
∑

1≤i<j≤n

yi − yj

xi − xj
(1− sij),

where sij ∈ Sn is the transposition switching xi and xj .
The remarkable result by Charles Dunkl that all ∇y commute allows to define the opera-

tors ∇p, p ∈ S(V ∗), by ∇p+q = ∇p +∇q,∇pq = ∇p∇q for all p, q ∈ S(V ∗).
In what follows we will mostly think of c as a formal parameter in the affine space AS/W ,

where S/W is the set of W -orbits in S. Using the notation Sc(V ) = C(c)⊗S(V ), consider each
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Dunkl operator ∇p as a C-linear map S(V ) → Sc(V ) (or, extending scalars, as a C(c)-linear
endomorphism of Sc(V )).

Thus, the association p 7→ ∇p defines an action of Sc(V ∗) on Sc(V ) by differential-difference
operators. In turn, this action and the isomorphism V ∼= V ∗ (hence Sc(V ∗) ∼= Sc(V )) given by
the scalar product define the bilinear form (·, ·)c : Sc(V )× Sc(V ) → C(c) by

(f, g)c
def= [∇f (g)]0, (1.1)

for all f, g ∈ Sc(V ) where x 7→ [x]0 is the constant term projection Sc(V ) → C(c). Clearly,
(f, g)c = 0 if f , g are homogeneous and deg f 6= deg g.

The form (1.1) is symmetric and its specialization at generic c : S → C and c = 0 is nonde-
generate. Understanding the values of c when the specialization of the form is degenerate and
the structure of the radical is crucial for the study of representations of the rational Cherednik
algebra Hc(W ) (see e.g. [9, 11, 4]).

A classical Chevalley theorem [6] says that the algebra S(V )W of W -invariants in S(V ) is iso-
morphic to the algebra of polynomials C[u1, . . . , u`] of certain homogeneous elements u1, . . . , u`,
where `

def= dim V . Throughout the paper we will call such u1, . . . , u` homogeneous generators or,
collectively, a homogeneous generating set of S(V )W . The homogeneous generators u1, . . . , u`

are not unique, but their degrees d1, . . . , d` (which we traditionally list in the increasing order)
are uniquely defined for each group W ; they are called the exponents of the group. In particular,
d1 = 2 iff V W = {0}; the largest exponent h

def= d` is called the Coxeter number of W . The
monomials ua def= ua1

1 · · ·ua`
` where a1, . . . , a` ∈ Z≥0 form an additive basis in S(V )W .

Let ≺ be the inverse lexicographic order on Z`
≥0: for a, a′ ∈ Z`

≥0 we write a′ ≺ a if the last
non-zero coordinate of the vector a − a′ is positive. The following is our first result asserting
the existence and uniqueness of canonical invariants:

Theorem 1.1 (Canonical invariants). Suppose that the degrees d1, . . . , d` are all distinct.
Then for each a = (a1, . . . , a`) ∈ Z`

≥0 there exists a homogeneous element ba = b
(c)
a ∈ Sc(V )W =

C(c) ⊗ S(V )W unique up to multiplication by a complex constant and such that for any homo-
geneous generating set u1, . . . , u` of S(V )W one has:

1. ba ∈ C× · ua +
∑

a′≺a C(c) · ua′;

2. (ua′ , ba)c = 0 whenever a′ ≺ a.

We will prove Theorem 1.1 in Section 3.1. We will refer to each element ba as a canonical
W -invariant in Sc(V )W and to the set B = {ba | a ∈ Z`

≥0}, as the canonical basis of Sc(V )W .
By the construction, the canonical basis B is orthogonal with respect to the form (1.1).

Remark 1.1. We can extend the theorem to the case when dk = dk+1 for some k. If V is
irreducible, then this happens only when W is of type D` with even ` and k = `/2. In this
case V =

∑`
i=1 C · xi, the positive roots are of the form xi ± xj , and let σ : V → V be the

involution given by σ(xi) =

{
xi if i < `

−x` if i = `
, i.e., σ is acting on roots as the symmetry of the

Dynkin diagram. Then Theorem 1.1 holds verbatim for any choice of homogeneous generators
u1, . . . , u` of S(V )W such that σ(u`/2) = −u`/2 (i.e., u`/2 ∈ C · x1 · · ·x`) and σ(uj) = uj for all
j 6= `/2.

An equality dk = dk+1 can also happen when V is reducible, i.e., V = V1⊕V2, W = W1×W2

and each Wi is a reflection group of Vi. This case can be handled by induction because S(V )W =
S(V1)W1 ⊗ S(V2)W2 .
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Remark 1.2. Theorem 1.1 generalizes to all complex reflection groups if one replaces the
symmetric bilinear form on V with the Hermitian one that canonically extends the W -invariant
Hermitian form on Sc(V ) (provided that c(s−1) = c(s) for all complex reflections s). The case of
equal degrees dk can be treated along the lines of Remark 1.1. More precisely, the phenomenon
dk = dk+1 occurs only for the following irreducible complex reflection groups (see e.g., [7, 5]):

1. The series G(m, p, `) with ` ≥ 2, p|`, p|m, and dk = dk+1 = m`/p, k = `/p.

2. The exceptional groups G7, G11, G19 of rank ` = 2 with d1 = d2 = 12, 24, 60, respectively.

In the case 1, similarly to Remark 1.1, one has V =
∑`

i=1 C · xi, σ : V → V is the auto-

morphism given by σ(xi) =

{
xi if i < `

ζx` if i = `
, where ζ is an m-th primitive root of unity. Then

Theorem 1.1 holds verbatim for any choice of homogeneous generators u1, . . . , u` of S(V )W such
that σ(uk) = ζm/puk (i.e., uk ∈ C · (x1 · · ·x`)m/p) and σ(ui) = ui for all i 6= k.

In the case 2 one can use various embeddings of rank 2 complex reflection groups (see e.g.,
[7, Section 3]) to acquire canonical invariants. For instance, G5 is a normal subgroup of index 2
in G7 and G5 has degrees (6, 12), which implies that if {b(c)

(a1,a2) | a1, a2 ∈ Z≥0} is the canonical

basis for S(V )G5 , then the set {b(c)
(2a1,a2)|a1, a2 ∈ Z≥0} is a (canonical) basis of S(V )G7 .

Therefore, the invariants b
(c)
a make sense for all complex reflection groups.

Assume that V W = {0}, i.e. d1 = 2, and denote by L the Dunkl Laplacian ∇e2 : Sc(V ) →
Sc(V ), where e2 is the only (up to a scalar multiple) quadratic W -invariant in S(V ). Clearly,
the restriction of L to Sc(V )W is a well-defined linear operator Sc(V )W → Sc(V )W .

Proposition 1.1. Assume that V W = {0}. Then

(a) For each r ≥ 0 the span of all b(a1,a2,...,a`) with a1 ≤ r is the kernel of the operator
Lr+1

∣∣
Sc(V )W .

(b) For each a = (a1, . . . , a`) we have:

ba = ea1
2 b(0,a2,...,a`)

(in particular, b(a1,0,...,0) = ea1
2 ).

See Section 3.2 for the proof.
The elements b(0,a2,...,a`) of the canonical basis are more elusive, however we compute them

completely when W is a dihedral group.

Theorem 1.2. Let W = I2(m) be the dihedral group of order 2m, V = C2.

(a) If c(s1) = c(s2) = c, then the generating function of all b(0,k) is given by

∑
k≥0

(
c

k

)
b(0,k)t

k =
(
1 + emt + em

2 t2
)c

,

where e2 and em are elementary W -invariants (of degrees 2 and m respectively).

(b) If m is even and c(s1) 6= c(s2), then (using the notation C
def= c(s1)+c(s2), δ

def= c(s2)−c(s1),
e′m = 1

4em − 1
2e

m/2
2 ) we have:

∑
k≥0

Γ(C−δ−1
2 )Γ(2k − C)

Γ(k − C+δ−1
2 )

b(0,k)t
k =

∫ 1

0

(
1− τ + tτ(em/2

2 + τe′m)
)C−δ−1

2
τ−C−1dτ. (1.2)
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We will prove the theorem in Section 3.5 by explicitly reducing the Dunkl Laplacians to the
Jacobi operators. In fact, it is easy to see that the formula (1.2) is equivalent to:

b(0,k) =
k!emk/2

2

4k
(
2k−C+1

k

)P (−C+δ+1
2

,−C−δ+1
2

)
k

(
em

2e
m/2
2

)

where P
(a,b)
k (y) is the k-th Jacobi polynomial (see e.g. [1, Section 6.3] or formula (3.7) below).

This and other of our arguments bear some similarity with methods of the seminal papers [8]
and [11] where Jacobi polynomials were first studied in the context of Dunkl operators.

Returning to the general case, note that deg ba =
∑

dkak. For each d ∈ Z≥0 such that

S(V )W
d 6= {0} we set e

(c)
d

def= bamax , where amax ∈ Z`
≥0 is maximal with respect to ≺ among all

a ∈ Z`
≥0 such that

∑
dkak = d. By the construction, deg e

(c)
d = d. The following result was

essentially proved in our previous paper [2].

Theorem 1.3. Let the exponents d1 < · · · < d` be pairwise distinct. Then

(a) The elements e
(c)
d1

, . . . , e
(c)
d`

generate the algebra Sc(V )W .

(b) Each e
(c)
dk

is determined (up to a multiple) by its homogeneity degree d = dk and the equation

∇P (e(c)
dk

) = 0 for any W -invariant polynomial P ∈ Sc(V )W such that deg P < dk.

(c) For each k = 1, 2, . . . there is a unique, up to a multiple, element e
(c)
kh ∈ Sc(V )W (where

h = d` is the Coxeter number) of the homogeneity degree d = kh satisfying the equation
∇P (e(c)

kh) = 0 for any W -invariant polynomial P ∈ S(V )W such that deg P < h.

We will give a new proof of Theorem 1.3 in Section 3.2. The proof will rely on the construction
of canonical invariants in Theorem 1.1.

Following [2], we refer to each e
(c)
dk

as the canonical elementary W -invariant and each e
(c)
kh as

the canonical quasiharmonic W -invariant.
The elementary invariants for c = 0 were, most apparently, defined by Dynkin (see e.g. [16])

and later explicitly computed by K. Iwasaki in [15]. We extend the results of [15] to all c in
Theorem 1.4 below.

We will also construct elementary invariants for W = Sn, V = Cn with the natural Sn-action.
It is convenient to identify Sc(V ) with the algebra C(c)[x1, . . . , xn] of polynomials in n variables
depending rationally on c. The degrees dk are here dk = k, k = 1, . . . , n, so Theorem 1.1 and
Theorem 1.3 are applicable.

To give the explicit formula for the invariants e
(c)
k define polynomials µ

(c)
k ∈ C(c)[x1, . . . , xn],

k = 2, . . . , n, by

µ
(c)
k =

k∑
s=1

(−1)sxs(∆(∇x1 , . . . , ∇̂xs , . . . ,∇xk
))∆(x1, . . . , xk),

where ∆(z1, . . . , zr) =
∏

1≤i<j≤r(zi − zj) is the Vandermonde determinant. Clearly, µ
(c)
k ∈

C(c)[x1, . . . , xn]Sk×Sn−k .

Theorem 1.4. For all 2 ≤ k ≤ n there exists αk,n ∈ C(c)× such that the k-th elementary
canonical invariant e

(c)
k ∈ C(c)[x1, . . . , xn]Sn is given by:

e
(c)
k = αk,n(c)

∑
w∈Sn/(Sk×Sn−k)

w
(
µ

(c)
k

)
. (1.3)
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We prove Theorem 1.4 in Section 3.3. Our proof (as well as the formula (1.3)) is very similar
to the one by K. Iwasaki who (using ∂p instead of Dunkl operators ∇p) computed e

(0)
k in [15].

Following his argument, one can construct the elementary canonical invariants e
(c)
dk

for other
classical groups as well.

Note that the formula (1.3) resembles the polynomial expansion of the elementary symmetric
polynomial ek = ek(x1, . . . , xn):

ek =
∑

w∈Sn/(Sk×Sn−k)

w(x1 · · ·xk) =
∑

1≤j1<···<jk≤n

xj1 · · ·xjk
.

The following main result demonstrates that this observation is not a mere coincidence.

Theorem 1.5. Let W = Sn. Then for all k = 2, . . . , n the elementary canonical invariants e
(c)
k

have no poles at the singular value c = 1/n, and

lim
c→1/n

e
(c)
k = ek

(
x1 −

e1(x)
n

, . . . , xn −
e1(x)

n

)
.

This result allows to introduce the elementary invariant polynomials for other reflection
groups via edk

= lim
c→1/h

e
(c)
dk

, where h is the Coxeter number.

We will prove Theorem 1.5 in Section 3.4 by analyzing the behaviour of the form (1.1)
near c = 1/n. Note, however, that we could not derive the theorem directly from the explicit
formula (1.3).

Example 1.1. Denote ēk(x) def= ek

(
x1 − e1(x)

n , . . . , xn − e1(x)
n

)
. It is easy to see that e

(c)
1 = 0,

e
(c)
k = ēk for k = 2, 3. Direct computations for all n using (1.3) show that

e
(c)
4 =

(n− 2)(n− 3)
2n

1− nc

(n2 − n)c− n− 1
ē2
2 + ē4, (1.4)

e
(c)
5 =

(n− 3)(n− 4)
n

1− nc

(n2 − n)c− n− 5
ē2ē3 + ē5, (1.5)

thus confirming Theorem 1.5.

Remark 1.3. The definition of the canonical invariants ba and some later formulas involving
them (e.g. (2.2) and (2.3)) suggest, for W = Sn, a close relation between canonical invariants ba

and Jack polynomials J
(α)
λ (see e.g. [19] for definition). Direct computations show, though,

that these polynomials are not the same. [17, equation (7)] shows, in particular, that the
expression of J

(α)
λ via elementary symmetric polynomials ei does not depend on n; for instance,

J
(α)
(11...1) = ek for all n and k (the partition contains k units). Formulas for ba, on the contrary,

contain n explicitly (see e.g. (1.4)). So, the relation between ba and Jack polynomials is yet to
be clarified.

2 The Dunkl Laplacian and the scalar product

Throughout the section we assume that 2 = d1 < · · · < d` = h and denote

e2 =
∑̀
i=1

x2
i ,
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where x1, . . . , x` is any orthonormal basis in the real space VR. Obviously, e2 is a unique (up to
a scalar multiple) quadratic W -invariant in S2(V ). The operator L = ∇e2 =

∑
i∇2

xi
, called the

Dunkl Laplacian, is independent of the choice of the basis xi; it equals the ordinary Laplacian if
c = 0.

The operator L plays a key role in the theory of Dunkl operators for W . As the following
result shows, an action of any Dunkl operator can be expressed via L:

Lemma 2.1 ([3, equation (1.9)]). For any p ∈ Sd(V ) one has

∇p =
1
d!

(adL)d(p) =
d∑

k=0

(−1)k

k!(d− k)!
Ld−k · p · Lk,

where p in the right-hand side means the operator of multiplication by p.

Denote by E : Sc(V ) → Sc(V ) the Euler vector field given by E(f) = Nf for any f ∈ SN
c (V ).

Also denote hc
def= 2

`

∑
s∈S c(s) (in particular, if all c(s) are equal to a single c, then hc = hc).

Proposition 2.1 ([14]). The operator E of multiplication by e2, Dunkl Laplacian L, and the
operator H

def= 2`(1− hc) + 4 E form a representation of sl2, that is,

[E,L] = H, [H,E] = 2E, [H,L] = −2L.

In particular,

[L,Ek] = 4kEk−1(`(1− hc)/2 + k − 1 + E)

for all k ≥ 0.

Denote Ud = U
(c)
d

def= KerL ∩ Sd
c (V ) = {f ∈ Sd

c (V ) | L(f) = 0}.

Lemma 2.2. One has

Sc(V ) =
⊕

k,d∈Z≥0

ek
2 · U

(c)
d , (2.1)

where the direct summands are orthogonal with respect to (·, ·)c. In particular, the restriction of
(·, ·)c to each ek

2 · Ud is nondegenerate.

Proof. First, note that Sc(V ) is an sl2-module, locally finite with respect to L, and ⊕d≥0U
(c)
d

is the highest weight space, so that decomposition (2.1) takes place.
Furthermore, note that the operator H from Proposition 2.1 is scalar on the space of poly-

nomials of any given degree and therefore self-adjoint; the operators L and E are adjoint to one
another with respect to (·, ·)c. Therefore, for k1 ≤ k2, d1, d2 ≥ 0 one has(

ek1
2 · U (c)

d1
, ek2

2 · U (c)
d2

)
c
=
(
Ek1

(
U

(c)
d1

)
, Ek2

(
U

(c)
d2

))
c
=
(
Lk2Ek1

(
U

(c)
d1

)
, U

(c)
d2

)
c

= δk1,k2 ·
(
U

(c)
d1

, U
(c)
d2

)
c
= δk1,k2δd1,d2 · C(c).

This proves the orthogonality of the decomposition. In particular, this implies that the restric-
tion of the nondegenerate form (·, ·)c to each ek

2 ·Ud is nondegenerate. The lemma is proved. �

Using this, we compute the form (·, ·)c as follows. Denote by ϕc a (unique) linear function
Sc(V ) → C(c) such that:

• ϕc(fe2) = ϕc(f) for all f ∈ Sc(V );

• ϕc(f) = [f ]0 for all f ∈ Ker L, where [ · ]0 : Sc(V ) → C(c) is the projection defined in (1.1).
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Proposition 2.2. We have:

(a) For f ∈ ek
2U

(c)
d , g ∈ Sd+2k

c (V ) one has

(f, g)c = ϕc(fg) · 4d+kk!
d+k−1∏

r=0

(`(1− hc)/2 + r). (2.2)

(b) If c : S/W → R<1/2, then the restriction of ϕc to S(VR) is given by:

ϕc(f) =

∫
Ω`−1 f(x) ·

∏
s∈S |αs(x)|−2c(s) dx∫

Ω`−1

∏
s∈S |αs(x)|−2c(s) dx

, (2.3)

where αs ∈ VR is a coroot of a reflection s ∈ S, Ω`−1 = {x ∈ VR | e2(x) = 1} is the unit
sphere in VR, and an element f ∈ S(V ) is identified with a polynomial on V .

Proof. Assume first that the function c takes only negative real values and define ϕc by equa-
tion (2.3). Now if k = 0 and f, g ∈ U

(c)
d , then the result follows from [12, Theorem 5.2.4].

By definition, ϕc(e2f) = ϕc(f) for any f . Now if f = ek
2 f̃ , g = ek′

2 g̃ where f̃ ∈ U
(c)
d , g̃ ∈ U

(c)
d′

with d 6= d′ then (f̃ , g̃)c = 0, hence ϕc(f̃ g̃) = 0 and therefore ϕc(fg) = 0. So taking f ∈ ek
2U

(c)
d

and g =
∑

r er
2g̃r ∈ Sd+2k

c (V ), where g̃r ∈ Ud+2k−2r, we see that

ϕc(fg) = ϕc(f̃ · g̃k).

On the other hand, decomposition (2.1) guarantees that (f, g)c = (f̃ , g̃k)c. Therefore, to
verify (2.2) for any k it suffices to take g = ek

2 g̃ for g ∈ U
(c)
d .

Assume that k > 0. Then Proposition 2.1 implies that

(ek
2 f̃ , ek

2 g̃)c = (Ek(f̃), Ek(g̃))c = (Ek−1(f̃), LEk(g̃))c = (Ek−1(f̃), [L,Ek](g̃))c

= (Ek−1(f̃), 4kEk−1(`(1− hc)/2 + k − 1 + E)g̃))c

= 4k(`(1− hc)/2 + k − 1 + d)(ek−1
2 (f̃), ek−1

2 g̃)c.

Therefore, by induction on k,

(ek
2 f̃ , ek

2 g̃)c = (f̃ , g̃)c ·
k∏

r=1

4r(`(1− hc)/2 + r − 1 + d),

which finishes the proof for c negative real. Now (2.2) implies that for c negative real the value
(f, g)c depends only on the product fg (provided d and k are fixed). Since (f, g)c is a rational
function of the values of c, this holds true for all c as well – so, one can use (2.2) to define ϕc

in the general case. �

The following is the main result of the section. Denote by S(V )+ the kernel of the constant
term projection u → [u]0, see (1.1). Define a symmetric bilinear form Φc : S(V )+ × S(V )+ →
C(c) as Φc(u, v) def= (u, v)c/(1 − hc). This form extends naturally to C[c] ⊗ S(V ). Define now
the form Φc on C[c]/(1− hc)⊗ S(V ) taking values in C[c]/(1− hc) by

Φc(u, v) = π(Φc(ũ, ṽ)),

where π : C[c] → C[c]/(1 − hc) is the canonical projection and ũ, ṽ ∈ Sc(V ) are any elements
such that u = π(ũ), v = π(ṽ).
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Theorem 2.1.

(a) The form Φc takes its values in C[c].

(b) Φc(u, u) 6= 0 for any non-zero element u ∈ R[c]/(1− hc)⊗R S(VR)+.

(c) For any UR ⊂ S(VR)+ the restriction of Φc to C[c]/(1− hc)⊗ UR is nondegenerate.

Proof. Prove (a) by induction on the degree of u. Indeed, it follows from [4, Proposition 2.1]
that for any x, y ∈ V one has:

(x, y)c = (1− hc)(x, y)0,

where (x, y)0 is the (complexified) W -invariant form on V . Therefore, Φc|V×V = (·, ·)0. Fur-
thermore, assume that Φc(u, v) ∈ C[c] for all u, v ∈ S<d(V )+. Then for any u1 ∈ Sd1(V ),
u2 ∈ Sd2(V ), v ∈ Sd(V ), where d1 + d2 = d, we have

Φc(u1u2, v) = Φc(u2,∇u1(v)) ∈ Φc(u2, C[c]⊗ Sd2(V )) ⊂ C[c].

This proves (a).
It is possible to prove (b) now. Let H0

def= {c ∈ CS/W | hc = 1}; it is an affine hyperplane
in the affine space AS/W . Then C[H0] = C[c]/(1 − hc) and R[H0] = R[c]/(1 − hc) are integral
domains (if |S/W | = 1 then H0 is a point c = 1/h and R[H0] = R).

Let A ⊂ R(AS/W ) be the algebra of all real-valued rational functions on the affine space
AS/W regular at H0. This algebra is local with the maximal ideal m = (1 − hc), and A/m is
isomorphic to R(H0), the field of fractions of H0. Finally, denote SA(VR)+ = A⊗R S(V )+.

Proposition 2.3. The naturally extended A-linear form Φc : SA(VR)+×SA(VR)+ → A satisfies:

if Φc(ũ, ũ) ∈ (1− hc)A for some ũ ∈ SA(VR) then ũ ∈ (1− hc)SA(VR). (2.4)

Proof. Clearly, the sl2-action from Proposition 2.1 preserves both R[c]⊗S(VR) and SA(VR), so
that the orthogonal decomposition (2.1) is valid for SA(VR) ⊂ Sc(V ). Therefore, it suffices to
verify (2.4) only for ũ ∈ ek

2Ũd, where

Ũd = U
(c)
d ∩ SA(VR) = {ṽ ∈ SA(VR) | L(ṽ) = 0}.

For every such ũ it follows from (2.2) that

Φc(ũ, ũ) = ϕc(ũ2) · 2 · 4d+k−1k!
d+k−1∏

r=1

(`(1− hc)/2 + r). (2.5)

Since the product in the right-hand side is not divisible by (1− hc), we see that ϕc(ũ2) ∈ A for
all ũ ∈ SA(VR). Implication (2.4) is now equivalent to the following one:

if ϕc(ũ2) ∈ (1− hc)A for some ũ ∈ SA(VR) then ũ ∈ (1− hc)SA(VR). (2.6)

In (2.6), if h = 2, i.e., W = S2, we have nothing to prove. Assume that h > 2 and let H̃0

be the set of all c0 : S/W → R<1/2 such that 1 − hc0 = 0 and ũ has no poles at c0. By the
very design, H̃0 is a non-empty open subset of the real hyperplane H0(R) ⊂ RS/W . Indeed, we
can write hc = h1c1 + · · ·+ hkck, where k = |S/W | and c1, . . . , ck are standard coordinates on
AS/W = Ak, all hi ∈ Q>0 and h1 + · · · + hk = h. The intersection H ′

0 = H0(R) ∩ (R<1/2)k

contains the point c = (1/h, . . . , 1/h), hence H ′
0 is non-empty and open in H0(R). The set H̃0 is

obtained from H ′
0 by removing poles of ũ ∈ A⊗ S(VR); so, H̃0 ⊂ H0(R) is open and non-empty
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as well. On the other hand, for each c0 ∈ H̃0 the specialization ũc0 ∈ S(VR) of ũ is well-defined.
Therefore, our choice of ũ and c0 implies that

ϕc0

(
ũ2

c0

)
= 0.

But the integral presentation (2.3) of ϕc0 guarantees that ϕc0(f
2) > 0 for all nonzero polynomials

f ∈ S(VR). Hence, ũc0 = 0, for all c0 ∈ H̃0. If |S/W | = 1, i.e., H0 is a single point c = 1/h,
then, clearly, c0 = 1/h and ũ1/h = 0 implies that ũ ∈ (1 − hc)SA(VR). Otherwise, if H0 is at
least an affine line, the set H̃0 is infinite and is a set of regular points for a rational function
c0 7→ ũc0 . Therefore, ũc0 = 0 for all c0 ∈ H0(R) and hence ũ ∈ (1− hc)SA(VR) as well, proving
implications (2.6) and (2.4). The proposition is proved. �

Part (b) of the theorem immediately follows from Proposition 2.3.
To prove (c) we need the following obvious result:

Lemma 2.3. Let Φ : U0 × U0 → k be a non-degenerate symmetric bilinear form on a k-vector
space U0. Then for any field F containing k the extension of Φ to U = F⊗kU0 is a non-degenerate
F-bilinear form U × U → F.

We will use the lemma with k being the field of fractions of the integral domain R[c]/(1−hc),
F – the field of fractions of C[c]/(1 − hc), U0 = k ⊗ UR, and Φ = Φc. It follows from part (b)
of the theorem that the restriction of Φc to U0 is non-degenerate. Hence Lemma 2.3 guarantees
the same for U = F⊗ U0. This proves part (c) of the theorem. �

Remark 2.1. The proof of Theorem 2.1(b) also implies unitarity of S(VR)+ as a module over the
rational Cherednik algebra Hc0(W ) for all c0 ∈ RS/W

≤0 and for small c0 ∈ RS/W
>0 . This agrees with

the results of the recent paper [13], where the unitary representations of Hc(W ) were studied.

3 Canonical basis and proofs of main results

3.1 Proof of Theorem 1.1

Fix a homogeneous generating set {u1, . . . , u`} of S(V )W and take the basis ua, a ∈ Z`
≥0, in S(V )

with the inverse lexicographic order. Define the C-subspaces Sc(V )W
≺a and Sc(V )W

�a of Sc(V )W

by

Sc(V )W
≺a =

∑
a′≺a

C(c)ua′ , Sc(V )W
�a = Cua + S(V )W

≺a. (3.1)

(clearly, Sc(V )W
≺a ⊂ Sc(V )W

�a). Note first that for each a ∈ Z`
≥0 the spaces Sc(V )W

≺a, Sc(V )W
�a do

not depend on the choice of generators u1, . . . , u` of S(V )W . Indeed, let u′1, . . . , u
′
` be another

set of generators of S(V )W . Since d1 < d2 < · · · < d`, one has u′i = αiui + Pi(u1, . . . , ui−1),
where αi ∈ C \ {0} and Pi is a polynomial of i− 1 variables for i = 1, 2, . . . , `.

We are going to define the canonical invariant ba ∈ Sc(V )W
�a as the unique (up to a multiple)

vector orthogonal to the subspace Sc(V )W
≺a. However, the uniqueness of such an element requires

more arguments.

Proposition 3.1. Let U be any subspace of S(VR). Then:

(a) the restriction of the form (1.1) to Uc = C(c)⊗ U is a non-degenerate symmetric bilinear
form on Uc;

(b) for any vector u ∈ S(VR) \ U there is a unique (up to a complex multiple) element b ∈
C · u + Uc such that (b, Uc)c = 0.
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Remark 3.1. Statement (a) of this proposition is essentially a Cherednik algebra version of the
statements proved in [18, statements 5.1.20 and 5.1.21] for double affine Hecke algebras.

Proof. We need the following general fact. Let A be a unital commutative local ring with
no zero-divisors, m its maximal ideal, k = A/m the residue field. In what follows we assume
that k ⊂ A so that the restriction of the canonical projection A → k to k is the identity
homomorphism k → k. Let U be a vector space over k and let Φ : U × U → A be a k-bilinear
symmetric form on U ; denote by Φ0 : U ×U → k the residual form given by Φ0

def= π ◦Φ, where
π : A → k is the canonical quotient map.

Lemma 3.1. In the notation as above assume that:

1. Φ0(u, u) 6= 0 for all u ∈ U \ {0}.

2. There exists an increasing sequence of prime ideals

{0} = m0 ⊂ m1 ⊂ m2 ⊂ · · · ⊂ mk = m

in A such that mi+1/mi is a principal ideal of A/mi for i = 0, 1, . . . , k − 1.

Then the natural A-bilinear extension of Φ to UA × UA → A, where UA
def= A⊗k U , satisfies

Φ(ũ, ũ) 6= 0 for all ũ ∈ UF \ {0}.

Proof. We proceed by induction on k. For k = 0, m = {0}, F = A = k, and we have nothing
to prove. Assume that k ≥ 1. Define the quotient ring A′ def= A/m1, and m′

i
def= mi+1/m1 in A′

for i = 0, . . . , k − 1. Clearly, the ring A′ and its ideals m′
i satisfy the assumptions of the lemma

for k − 1; therefore, the inductive hypothesis holds in the following form:

if Φ(ũ, ũ) ∈ m1 for some ũ ∈ A⊗ U, then ũ ∈ m1 ⊗ U. (3.2)

Since the ideal m1 is principal, i.e., m1 = c1A, we can write each non-zero vector ũ ∈ m1 ⊗U
in the form ũ = c`

1ũ0, where ũ0 /∈ m1 ⊗ U . Therefore, the equation Φ(ũ, ũ) = 0 is equivalent to
Φ(ũ0, ũ0) = 0. However, applying the inductive hypothesis (3.2) to any ũ0 /∈ m1 ⊗ U satisfying
Φ(ũ0, ũ0) = 0, we obtain a contradiction. Therefore, Φ(ũ0, ũ0) 6= 0 for all u0 /∈ m1 ⊗ U . Hence
Φ(ũ, ũ) = 0 for ũ ∈ A⊗ U if and only if ũ = 0.

The lemma is proved. �

We apply the lemma in the case when F = C(c) = C(c1, . . . , ck) is the field of rational
functions in the variables c1, . . . , ck (where k = |S/W | is the number of conjugacy classes of
reflections in W ), A ⊂ F is the local ring of all rational functions regular at c = 0, and mi is the
ideal of A generated by c1, . . . , ci for i = 0, 1, . . . , k. Clearly, the ideals mi satisfy condition 2
of Lemma 3.1. Take U to be any subspace of S(VR) and let Φ : U × U → A ⊂ R(c) be the
restriction of the form (1.1) to U . Since the specialization Φ0 of Φ at c = 0 is a positive definite
form on U , condition 1 of Lemma 3.1 holds as well.

Thus, Lemma 3.1 guarantees that for any U ⊂ S(VR) each ũ ∈ R(c) ⊗ U \ {0} satisfies
(ũ, ũ)c 6= 0.

Therefore, the restriction of the form (1.1) to R(c)⊗ U is non-degenerate. By extending the
coefficients from R(c) to C(c) this immediately proves assertion (a) of Proposition 3.1.

To prove assertion (b) denote U⊥
c = {ũ′ ∈ C(c)u + Uc | (ũ′, Uc)c = 0}. Clearly, U⊥

c 6= 0
and (U⊥

c ∩ Uc, Uc)c = 0; hence U⊥
c ∩ Uc = 0 by assertion (a). This implies that dim U⊥

c = 1.
Therefore, U⊥

c = C(c) · b for some b ∈ u + Uc. This completes the proof of Proposition 3.1. �
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Now we are ready to finish the proof of Theorem 1.1. For each a ∈ Z`
≥0 denote by Sc(VR)≺a =

Sc(VR)∩Sc(V )≺a (see (3.1)) the real forms of S(V )≺a. Fix u1, . . . , u` to be a homogeneous gen-
erating set of S(VR)W so that (3.1) implies that Sc(VR)W

≺a =
∑

a′≺a R(c)ua′ and C⊗Sc(VR)≺a =
Sc(V )≺a.

Therefore, Proposition 3.1 is applicable to this situation with U = Sc(VR)W
≺a, u = ua,

and there exists a unique (up to a complex multiple) element b = ba ∈ Sc(V )�a such that
(ba, Sc(V )W

≺a) = 0 (in particular, ba /∈ Sc(V )W
≺a). In other words, ba satisfies both conditions of

Theorem 1.1, and the theorem is proved.

3.2 Proof of Proposition 1.1 and Theorem 1.3

Proof of Proposition 1.1. To prove (a), let u1(= e2), u2, . . . , u` be any homogeneous genera-
ting set of S(V )W . Theorem 1.1 guarantees that for any a = (a1, . . . , a`), a′ = (a′1, . . . , a

′
`) ∈ Z`

≥0

with a′1 > a1 we have

(ua′ , ba)c = 0.

Equivalently, taking into account that (er+1
2 u, ba)c = (u, Lr+1(ba))c for all r ≥ 0, we obtain

(S(V )W ,∇a1+1
e2

(ba))c = 0. Since the form (1.1) is nondegenerate, we obtain

La1+1(ba) = 0

for all a ∈ Z`
≥0. This proves that Br = {ba | a1 ≤ r} is a (linearly independent) subset of

the kernel of Lr+1
∣∣
Sc(V )W . On the other hand, since e2 and L form a representation of sl2 by

Proposition 2.1, we obtain isomorphisms of graded spaces:

Sc(V )W ∼= C(c)[e2]⊗K,

Ker Ln+1
∣∣
Sc(V )W = (

n∑
r=0

C(c) · er
2)⊗K

where K is the kernel of L|Sc(V )W . In particular, the Hilbert series of K is
∏̀
k=2

1
1−tdk

, so that

dim(K ∩ Sd
c (V )) = |B0 ∩ Sd

c (V )| ,

hence

dim(Ker Lr+1
∣∣
Sc(V )W ∩ Sd

c (V )) = |Br ∩ Sd
c (V )|

for all r ≥ 0. This, together with the inclusion Br ⊂ Ker Lr+1
∣∣
Sc(V )W , proves that Br is a basis

of Ker Ln+1
∣∣
Sc(V )W . Part (a) is proved.

To prove (b), denote

b̃a = ea1
2 b(0,a2,...,a`)

for each a = (a1, . . . , a`) ∈ Z`
≥0. Since b̃a satisfies condition 1 of Theorem 1.1, to prove that

ba = b̃a it suffices to verify that the elements b̃a satisfy condition 2 of the same theorem. This
is equivalent to the elements b̃a being pairwise orthogonal, i.e., (b̃a, b̃a′)c = 0 whenever a 6= a′.
Part (a) guarantees that both b0,a2,...,a`

and b0,a′2,...,a′`
are in the kernel of L, so by Lemma 2.2

we obtain:

(b̃a, b̃a′)c ∈ δa1,a′1
· (b̃(0,a2,...,a`), b(0,a′2,...,a′`)

)c · C(c) = δa,a′ · C(c)

because the elements b(0,a2,...,a`) and b(0,a′2,...,a′`)
of the canonical basis B are orthogonal unless

(a2, . . . , a`) = (a′2, . . . , a
′
`). This proves (b).

Proposition 1.1 is proved. �
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Proof of Theorem 1.3. Take a homogeneous set u1, . . . , u` of generators in S(V )W , and de-
note, as usual, ua def= ua1

1 · · ·ua`
` . By definition, (ua, e

(c)
dk

)c = 0 for all a ∈ Z`
≥0 such that

ak = · · · = a` = 0. For any such non-zero a ∈ Z`
≥0 let s ≤ k − 1 be the largest index such

that as 6= 0 and let a′
def= a − δs ∈ Z`

≥0 (we denote δs = (0, . . . , 1, . . . , 0), where 1 is in the s-th

position). Then (ua′ ,∇us(e
(c)
dk

))c = 0. In particular, the element ∇us(e
(c)
dk

) is (·, ·)c-orthogonal to
all of the monomials ua′ such that deg ua′ = dk − ds. Since the form (·, ·)c is nondegenerate for
generic c, this implies ∇us(e

(c)
dk

) = 0.

By definition e
(c)
dk
≡ uk mod Sc(V )≺δk

(see (3.1) and the property 1 of the canonical basis ba),

which implies that (e(c)
d1

)a1 . . . (e(c)
d`

)a` ≡ ua mod Sc(V )≺a. Indeed, if for every k = 1, . . . , h

e
(c)
dk

= uk +
∑

βp1,...,pk−1
up1

1 · · ·upk−1

k−1

for some βp1,...,pk−1
∈ C(c) then

(e(c)
d1

)a1 . . . (e(c)
d`

)a` = ua1
1 · · ·ua`

` +
∑

p1,...,p`−1

a`−1∑
p`=1

γp1,...,p`
up1

1 · · ·up`
`

for some γp1,...,p`
∈ C(c). Here (p1, . . . , p`) ≺ (a1, . . . , a`), because the last non-zero coordinate of

(a1− p1, . . . , a` − p`) is positive. Thus, the monomials (e(c)
d1

)a1 · · · (e(c)
d`

)a` for all a1, . . . , a` ∈ Z≥0

form a basis of Sc(V )W , and part (a) of Theorem 1.3 is proved.
To prove part (b) let µ

(c)
k ∈ Sc(V )W be any element satisfying its conditions. Then for any

a ≺ δk one has (ua, µ
(c)
k )c = ∇a1

u1
· · ·∇ak−1

uk−1(µ
(c)
k ) = 0, hence µ

(c)
k = const · e(c)

dk
+
∑

δk≺q βqbq for
some βq ∈ C(c). The element bq is homogeneous with deg bq =

∑`
i=1 diqi. Since d1 < · · · < dk <

· · · < d`, one has deg bq > dk for every q. Therefore, the homogeneity condition implies that
µ

(c)
k = const · e(c)

dk
. Part (b) is proved.

Part (c), given here for completeness, is proved in our previous paper [2].
Theorem 1.3 is proved. �

3.3 Proof of Theorem 1.4

The argument follows almost literally the original proof for c = 0 given in [15]; we put it here
mostly for reader’s convenience.

Abbreviate ∇xi as ∇i; also take x
def= (x1, . . . , xn) and ∇ def= (∇1, . . . ,∇n).

Let c be generic.

Lemma 3.2. A function f can be represented as (P (∇))(∆(x)) for some polynomial P if and
only if (ek(∇))(f(x)) = 0 for all k.

Proof. For c = 0 (when ∇i = ∂xi) it is a theorem due to Steinberg [20]. For c generic the
Dunkl operators are conjugate to differentiations by means of some intertwining operator B
(see [11]): ∇i = B−1∂xiB, and therefore ek(∇)(f(x)) = 0 is equivalent to ek(∂)B(f(x)) = 0.
By the Steinberg’s theorem it means that f = B−1P (∂)∆ = P (∇)B−1∆. But since ∆ is skew-
symmetric, ∇i∆ is proportional to ∂xi∆, and therefore B−1∆ = λ∆ for some constant λ. The
lemma is proved. �

Consider now the polynomials fi = ∇i(e
(c)
n ). Obviously, (ek(∇))(fi) = 0 for all k, and

therefore fi = (gi(∇))(∆(x)). Without loss of generality, gi can be taken skew-invariant with
respect to the subgroup Gi ⊂ Sn of permutations leaving i fixed; from degree considerations
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one obtains gi(x) = const · ∆(x1, . . . , x̂i, . . . , xn). Euler’s formula e
(c)
n = n ·

∑n
i=1 xifi implies

now (1.3) for k = n.
Let pm(y1, . . . , ys)

def= ym
1 + · · ·+ ym

s . Since (1.3) for k = n is proved, one has

(pi(∇j1 , . . . ,∇jk
))(fj1,...,jk

(x)) = const · δik,

where 1 ≤ j1 < · · · < jk ≤ n and fj1,...,jk

def= e
(c)
k (xj1 , . . . , xjk

). Thus, if Fk is the right-hand side
of (1.3), one has

pi(∇)Fk = const ·
∑

1≤j1<···<jk≤n

(pi(∇))(fj1,...,jk
(x))

= const ·
∑

1≤j1<···<jk≤n

(pi(∇j1 , . . . ,∇jk
))(fj1,...,jk

(x)) = const · δik,

Hence, Fk = e
(c)
k .

Theorem 1.4 is proved.

3.4 Proof of Theorem 1.5

We need the following result.

Proposition 3.2. The canonical basis B is well-defined at hc = 1 (e.g., at c = 1/h) and B\{1}
is orthogonal with respect to the form Φc (see Theorem 2.1).

Proof. Indeed, in the definition of ba in Theorem 1.1 we can take u1, . . . , u` to be a homogeneous
generating set of S(VR)W

+ . Let us prove that for each a ∈ Z`
≥0 \ {0} the coefficients ca,a′ of the

expansion ba =
∑

a′�a ca,a′u
a have no poles at hc = 1. Suppose the contrary. Then there

exists an exponent ` > 0 such that b̃a = (1 − hc)`ba is regular at hc = 1 and π(b̃a) 6= 0, where
π : A → A/(1 − hc) is the canonical homomorphism (A is as in Proposition 2.3). Since ` > 0,
we see that π(b̃a) ∈ U

def=
∑

a′≺a,a′ 6=0 k · ua′ , where k = A/(1− hc). But since Φc(ba, u
a′) = 0 for

all a′ ≺ a, we see that Φc(π(b̃a), U) = 0 which contradicts Theorem 2.1(c). The contradiction
obtained proves that ` = 0, i.e., π(ba) is well-defined. The orthogonality of these elements is
obvious. �

Let W = Sn, V = Cn. Here dk = k, k = 1, . . . , n. Recall that ek = ek(x1, . . . , xn) ∈
C[x1, . . . , xn] is the k-th elementary symmetric polynomial and ēk = ek(x1− e1(x)

n , . . . , xn− e1(x)
n ).

The elements ēk, k = 2, . . . , n generate a subalgebra of S(V )Sn isomorphic to S(V ′)Sn , where
V ′ = {x ∈ V |

∑
i xi = 0}.

Lemma 3.3. Using the notation pr
def= yr

1 + · · ·+ yr
n, we obtain

∇pr(ēk) = (−1)r(n− k + 1) · · · (n− k + r)
(1− nc)r − (1− nc)

nrc
ēk−r.

Proof. Denote

Qk,i(x) def= ek

(
x1 −

e1(x)
n

, . . . ,
̂

xi −
e1(x)

n
, . . . , xn −

e1(x)
n

)
(the i-th argument omitted). Easy calculations show that

n∑
i=1

Qk,i = (n− k)ēk, (3.3)
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∂Qk,i

∂xi
= −n− k

n
Qk−1,i,

∂ēk

∂xi
= ∇yi(ēk) = Qk−1,i −

n− k + 1
n

ēk−1. (3.4)

Clearly,∑
j 6=i

(ij)Qk,i −Qk,i

xi − xj
= (n− k)Qk−1,i,

and therefore the Dunkl operator

∇yi(Qk,i) = (n− k)
(

c− 1
n

)
Qk−1,i.

An induction on r (where (3.4) is the base) gives then

∇r
yi

(ēk) = (n− k + 1) · · · (n− k + r − 1)
(nc− 1)r − (−1)r

nrc
Qk−r,i

+ (−1)r (n− k + 1) · · · (n− k + r)
nr

ēk−r.

Summation over i using (3.3) finishes the proof. �

Lemma 3.3 implies that ∇(c)
pr (ēk) = 0 for c = 1/n and all r < k. Since p1, . . . , pn generate

C[x1, . . . , xn]Sn , we obtain

∇(c)
P (ek) = 0

for c = 1/n and any homogeneous symmetric polynomial P of degree deg P < k.
On the other hand, by Theorem 1.3(b) one has ∇P (e(c)

k ) = 0 for any homogeneous symmetric
polynomial P of degree deg P < k. Therefore,

Φ1/n(ēa′ , ēk) = 0 = Φ1/n

(
ēa′ , e

(1/n)
k

)
for any a′ ≺ δk. Here we abbreviated Φ1/n

def= Φc with c = 1/n in the notation of Theorem 2.1

and e
(1/n)
k

def= limc→1/h e
(c)
k , which is well-defined by Proposition 3.2. Consequently,

Φ1/n(U, e
(1/n)
k − αēk) = 0

for all a′ ≺ δk, α ∈ C×, where U =
∑

a′≺δk
C · e a′ . Therefore, e

(1/n)
k = αēk because, on the one

hand, e
(1/n)
k − αēk ∈ U for some α 6= 0, and on the other hand, the restriction of Φ1/n to U is

non-degenerate by Theorem 2.1(c).
Theorem 1.5 is proved.

3.5 Canonical invariants of dihedral groups and proof of Theorem 1.2

Throughout the section we deal with the dihedral group

W = I2(m) = 〈s2
0 = s2

1 = (s0s1)m = 1〉

of order 2m.
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We denote by {z, z} the basis of V such that

sj(z) = −ζj z̄, sj(z̄) = −ζ−jz. (3.5)

for j = 0, 1, where ζ = e2πi/m is an m-th primitive root of unity.
We also denote by e2, em the generators of S(V )W given by

e2 = zz, em = zm + zm.

Lemma 3.4. The restriction of the Dunkl Laplacian L to S(V )W = C[e2, em] for W = I2(m)
equals:

L = e2∂
2
e2

+ mem∂e2∂em + m2em−1
2 ∂2

em
+
(
1− m

2
C
)

∂e2 +
m2

2
δe

m/2−1
2 ∂em ,

where C
def= c(s1)+ c(s2) and δ

def= c(s2)− c(s1) (so that δ = 0 when m is odd); ∂e2 and ∂em mean
here differentiation with respect to e2 and em, respectively, in the ring C[e2, em].

Proof. Clearly, s ◦ ∂y = ∂s∗(y) ◦ s for any linear automorphism s of V and any y ∈ V ∗, where
∂y : S(V ) → S(V ) is the directional derivative. So, L can be rewritten in the form L =

∑
i Disi

where Di are differential operators (of order at most 2) and si are reflections. Thus, on the space
of invariant functions L is a second order differential operator. To determine its coefficients
it suffices to compute L on monomials of degree 1 and 2 in e2, em. This is done in [10]; see
also [2]. �

Corollary 3.1. In the notation of Lemma 3.4, we have

4
m2

e2L = E2 − CE +
(

4
em
2

e2
m

− 1
)

(D2 −D) +

(
C − 1 + 2δ

e
m/2
2

em

)
D

where E def= 2
me2∂e2 + em∂em is a multiple of the Euler derivation, and D def= em∂em.

Proof. Since ∂e2e2 = e2∂e2 + 1, one obtains

4e2L = (2e2∂e2)
2 + 4m(e2∂e2)(em∂em) + 4m2em

2 ∂2
em
− 2mCe2∂e2 + 2m2δe

m/2
2 ∂em .

Equalities (2e2∂e2)
2 +4m(e2∂e2)(em∂em) = m2(E2−D2) and ∂2

em
= 1

e2
m

(D2−D) imply now that

4
m2

e2L = E2 −D2 + 4
em
2

e2
m

(D2 −D)− C(E − D) + 2δ
e
m/2
2

em
D,

and the corollary follows. �

Corollary 3.2 (of Corollary 3.1). Let f = f(x, u) ∈ C[[x, u]]. Then

4
m2

e2L

(
f

(
em

e
m/2
2

, e
m/2
2 t

))
= Lx,u(f(x, u))|

x= em

e
m/2
2

,u=e
m/2
2 t

where

Lx,u = u2∂2
u − (C − 1)u∂u + (4− x2)∂2

x + ((C − 1)x + 2δ)∂x.
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Proof. Follows from

D
(

f

(
em

e
m/2
2

, e
m/2
2 t

))
=

em

e
m/2
2

fx

(
em/e

m/2
2 , e

m/2
2 t

)
= (x∂x) f(x, u)|

x=
em

e
m/2
2

, u=e
m/2
2 t

and

E
((

em

e
m/2
2

)p(
e
m/2
2 t

)q) =
(

2
m

e2∂e2 + em∂em

)(
ep
me

(q−p)m/2
2 tq

)
= q
(
ep
me

(q−p)m/2
2 tq

)
= (u∂u) (xpuq)|

x=
em

e
m/2
2

, u=e
m/2
2 t

. �

Proof of Theorem 1.2. In view of Corollary 3.2, for c = const it suffices to prove that
Lx,u(pc) = 0, where p = 1 + xu + u2. Indeed,

u∂u(pc) = cu(x + 2u)pc−1 = 2cpc − c(2 + ux)pc−1,

((u∂u)2 − 2cu∂u)(pc) = u∂u(u∂u − 2c)(pc) = −cu∂u((2 + ux)pc−1)

= −cuxpc−1 − c(c− 1)u(2 + ux)(x + 2u)pc−2,

∂x(pc) = cupc−1,

∂2
x(pc) = c(c− 1)u2pc−2.

For c = const one has C = 2c and δ = 0, so that

c−1p2−cLx,u(pc) = −uxp− (c− 1)u(2 + ux)(x + 2u) + (4− x2)(c− 1)u2 + (2c− 1)xup

= (c− 1)u(2xp− (2 + ux)(x + 2u) + (4− x2)u)

= 0.

This proves part (a) of Theorem 1.2.
To prove part (b) define I

(a,b)
r (y, u) ∈ C[[y, u]] for each r, a, b by

I(a,b)
r =

∫ 1

0
sa+b(1− s)−b−1−r

(
1− s + us

(
1− s

2
(1− y)

))r
ds.

Clearly, the right-hand side of (1.2) equals I
(a,b)
r (y, u) with a = −(C+δ+1)/2, b = −(C−δ+1)/2,

r = −b− 1, u = e
m/2
2 t, and y = em

2e
m/2
2

(so that 1−y
2 = − e′m

e
m/2
2

).

Therefore, in view of Corollary 3.2, it suffices to prove that

Lx,u(I(a,b)
r (x/2, u)) = 0 (3.6)

for all r, where a, b are as above, and to determine the normalizing coefficients nk(c).
Recall that the n-th Jacobi polynomial P

(a,b)
n (y) is given by

P (a,b)
n (y) =

Γ(a + n + 1)
n!Γ(n + a + b + 1)Γ(−n− b)

∫ 1

0
sn+a+b(1− s)−n−b−1

(
1− s

2
(1− y)

)n
ds (3.7)

(with the analytic continuation to all a, b ∈ C). Thus one has

I(a,b)
r (y, u) =

∫ 1

0
sa+b(1− s)−b−1

∞∑
n=0

Γ(r + 1)
n!Γ(r − n + 1)

unsn(1− s)−n
(
1− s

2
(1− y)

)n
ds

=
∞∑

n=0

Γ(r + 1)
n!Γ(r − n + 1)

un

∫ 1

0
sa+b+n(1− s)−b−1−n

(
1− s

2
(1− y)

)n
ds



Dunkl Operators and Canonical Invariants of Reflection Groups 17

=
∞∑

n=0

Γ(r + 1)Γ(n + a + b + 1)Γ(−n− b)
Γ(r − n + 1)Γ(a + n + 1)

P (a,b)
n (y)un

def=
∞∑

n=0

qn(r, a, b)P (a,b)
n (y)un.

The Jacobi polynomial P
(a,b)
n (y) belongs to the kernel of the differential operator

J (a,b) def= (1− y2)∂2
y + (b− a− (a + b + 2)y)∂y + n(n + a + b + 1)

(see e.g. [1] for proof). Therefore, I(a,b)(y, u) =
∑∞

n=0 qn(r, a, b)P (a,b)
n (y)un satisfies

L̃(a,b)
y,u (I(a,b)

r (y, u)) = 0, (3.8)

where L̃
(a,b)
y,u = (1− y2)∂2

y + (b− a− (a + b + 2)y)∂y + u2∂2
u + (a + b + 2)u∂u.

Take now a = −(C + δ + 1)/2, b = −(C − δ + 1)/2, so that a + b + 2 = −(C − 1), b− a = δ.
One has then

L̃(a,b)
y,u = (1− y2)∂2

y + (δ + (C − 1)y)∂y + u2∂2
u − (C − 1)u∂u

= (4− (2y)2)∂2
2y + (2δ + (C − 1)(2y))∂2y + u2∂2

u − (C − 1)u∂u

= L2y,u.

Therefore, (3.8) implies (3.6).
To finish the proof it remains to find the value of the normalization coefficients nk = nk(c)

in (1.2). To do this, substitute e2 = 0 into (1.2), so that e′m = em/4. Under this specialization,
b(0,k) becomes a (complex) multiple of ek

m and the right-hand side of (1.2) becomes (with the
abbreviation α = C−δ−1

2 ):∫ 1

0
(1− s)αs−C−1(1 +

ts2

4(1− s)
em)αds

=
∞∑

k=0

(
α

k

)
tk
(em

4

)k
∫ 1

0
(1− s)α−ks−C+2k−1ds

=
∞∑

k=0

(
α

k

)
Γ(α− k + 1)Γ(−C + 2k)

Γ(α + k − C + 1)
tk
(em

4

)k

=
∞∑

k=0

Γ(α + 1)Γ(−C + 2k)
k! · Γ(α + k − C + 1)

tk
(em

4

)k

=
∞∑

k=0

Γ(C−δ+1
2 )Γ(2k − C)

Γ(k − C+δ−1
2 )

tk
ek
m

4kk!
.

This proves (1.2) and finishes the proof of part (b) of Theorem 1.2. �
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