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Abstract. We consider expansions of functions in Lp(R, |x|2kdx), 1 ≤ p < +∞ with respect
to Dunkl–Hermite functions in the rank-one setting. We actually define the heat-diffusion
and Poisson integrals in the one-dimensional Dunkl setting and study their properties. Next,
we define and deal with Hilbert transforms and conjugate Poisson integrals in the same
setting. The formers occur to be Calderón–Zygmund operators and hence their mapping
properties follow from general results.
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1 Introduction

The study of Dunkl operators has known a considerable growth during the last two decades due
to their relevance in mathematical physics and since they give the way to built a parallel to
the theory of spherical Harmonics based on finite root systems and depending on a set of real
parameters. In this spirit, the Hilbert transform, a basic tool in signal processing and in Fourier
and harmonic analysis as well, may be defined by means of partial derivatives, so that, since the
commutative algebra of Dunkl operators generalize the one of partial derivatives, it is natural to
extend the study of Hilbert transforms and connected topics as heat diffusion, Poisson integrals
and others to the Dunkl setting. In this work, we start with investigating the rank-one case, that
is why we sketch some facts that are subsequently needed. Let k be a nonnegative parameter
and let Tk be the Dunkl operator acting on smooth functions f as

Tkf(x) = f ′(x) + k
f(x)− f(−x)

x
, f ∈ C1(R).

To that operator is associated the so-called Dunkl–Hermite operator on R denoted Lk and
defined by

Lk = T 2
k − x2.

Its spectral decomposition is given by the Dunkl–Hermite functions hk
n defined by

hk
n(x) = e−

x2

2 Hk
n(x),

where Hk
n are the generalized Hermite polynomials which we call the Dunkl–Hermite polynomials

as in [3], namely (see [8])

Lkh
k
n(x) = −(2n + 2k + 1)hk

n(x).
?This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection

is available at http://www.emis.de/journals/SIGMA/Dunkl operators.html
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http://dx.doi.org/10.3842/SIGMA.2009.037
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Recall also that Hk
n were introduced in [7] and studied by Rösler in [8], whence

Hk
2n(x) = (−1)n

√
n!

Γ(n + k + 1
2)

L
k− 1

2
n

(
x2
)
,

Hk
2n+1(x) = (−1)n

√
n!

Γ(n + k + 3
2)

xL
k+ 1

2
n

(
x2
)
,

where Lα
n are the Laguerre polynomials of index α ≥ −1

2 , given by

Lα
n(x) =

1
n!

x−αex dn

dxn

(
xn+αe−x

)
.

It is well known that the system {Hk
n}n≥0 is complete and orthonormal in L2(R, e−x2 |x|2kdx),

therefore the system {hk
n}n≥0 is complete and orthonormal in L2(R, |x|2kdx).

Hereafter, Lp(R, |x|2kdx), 1 ≤ p < +∞ is the space of measurable functions on R satisfying

‖f‖k,p :=
(∫

R
|f(x)|p|x|2kdx

) 1
p

< +∞,

and f belongs to Lp(R, |x|2kdx), 1 ≤ p < +∞, unless mentioned. For a given f , one defines the
heat-diffusion integral Gk(f) by

Gk(f)(t, x) =
+∞∑
n=0

e−t(2n+2k+1)ak
n(f)hk

n(x), t > 0, x ∈ R,

where

ak
n(f) =

∫
R

f(t)hk
n(t)|t|2kdt.

We shall establish that Gk(f) possesses the following integral representation

Gk(f)(t, x) =
∫

R
Pk(t, x, y)f(y)|y|2kdy,

where

Pk(t, x, y) =
+∞∑
n=0

e−t(2n+2k+1)hk
n(x)hk

n(y).

We shall prove that Gk(f)(t, ·), t > 0, satisfies

‖Gk(f)(t, ·)‖k,p ≤ (cosh(2t))−(k+ 1
2
)‖f‖k,p.

Next, we define the Poisson integral Fk(f) by

Fk(f)(t, x) =
+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)hk

n(x), t > 0, x ∈ R.

We shall establish that Fk(f) possesses the following integral representation

Fk(f)(t, x) =
∫

R
f(y)Ak(t, x, y)|y|2kdy,
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where

Ak(t, x, y) =
t√
4π

∫ +∞

0
Pk(u, x, y)u−

3
2 e−

t2

4u du

is the Poisson kernel associated with {hk
n}n≥0. We shall show that Fk(f)(t, ·) ∈ Lp(R, |x|2kdx)

and

‖Fk(f)(t, ·)‖k,p ≤ 2k+ 1
2 e−t

√
2k+1‖f‖k,p.

Also, we define the Hilbert transforms associated with the Dunkl–Hermite operators formally by

H±
k = (Tk ± x)(−Lk)−

1
2 .

We write f ∼
+∞∑
n=0

ak
n(f)hk

n, to say that the last series represents the expansions of f with respect

to {hk
n}n≥0. Note, that if f ∼

+∞∑
n=0

ak
n(f)hk

n, then again formally,

H+
k f ∼

+∞∑
n=0

ak
n(f)

θ(n, k)√
2n + 2k + 1

hk
n−1, H−

k f ∼ −
+∞∑
n=0

ak
n(f)

θ(n + 1, k)√
2n + 2k + 1

hk
n+1,

where

θ(n, k) =
{ √

2n if n is even,

θ(n, k) =
√

2n + 4k if n is odd;

here and also later on, we use the convention that hk
n−1 = 0 if n = 0.

We shall see that

H±
k f(x) = lim

ε−→0

∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy,

exist for almost every x, where R±
k (x, y) are appropriate kernels. Next, we shall prove that the

operators H±
k are bounded on Lp(R, |x|2kdx).

Finally, we use the Dunkl–Hermite functions to define the conjugate Poisson integrals f±k (t, x)
by

f+
k (t, x) =

+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)

θ(n, k)√
2n + 2k + 1

hk
n−1(x),

f−k (t, x) =
+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)

θ(n + 1, k)√
2n + 2k + 1

hk
n+1(x).

We shall establish that f±k (t, x) possesses the integral representations

f+
k (t, x) =

∫
R

Qk(t, x, y)f(y)|y|2kdy, f−k (t, x) =
∫

R
Mk(t, x, y)f(y)|y|2kdy,

where Qk(t, x, ·) and Mk(t, x, ·) are kernels expressed in terms of the Dunkl kernel Ek(x, y) which
is the eigenfunction of the Dunkl operator Tk.

We point out that recently (see [6]) A. Nowak and K. Stempak have studied Riesz transforms
for the Dunkl harmonic oscillator in the rank-one case.

We conclude this introduction by giving the organization of this paper. In the second section,
we define the heat-diffusion integral Gk(f) and the Poisson integral Fk(f) and give the integral
representations of Gk(f) and Fk(f). In the third section, we deal with the Hilbert transformsH±

k

and prove that these operators are of the strong type (p, p), 1 < p < +∞. The remaining part
is concerned with the study of the conjugate Poisson.
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2 Heat-diffusion and Poisson integrals

2.1 Heat-diffusion

With the help of the Dunkl–Hermite functions introduced in the previous section, we define and
study the heat-diffusion in the Dunkl setting. As the Dunkl–Hermite polynomials are expressed
in terms of Laguerre polynomials, using Lemma 1.5.4 in [12], we have the following limiting
behavior of ‖hk

n‖k,p, with respect to n.

Proposition 1. For 1 ≤ p ≤ 4, we have

‖hk
2n‖k,p ∼

{
n
− 1

4
+ 1

2p
+k( 1

p
− 1

2
)
, if k(p− 2) < 1,

n
− 1

4
− 1

2p
+k( 1

2
− 1

p
)
, if k(p− 2) > 1,

‖hk
2n+1‖k,p ∼

{
n
− 1

4
+ 1

2p
+k( 1

p
− 1

2
)
, if k(p− 2) < 1,

n
− 1

4
− 1

2p
+k( 1

2
− 1

p
)
, if k(p− 2) > 1.

For p > 4, we have

‖hk
2n‖k,p ∼


n
− 1

12
− 1

6p
+k( 1

p
− 1

2
)
, if k(p− 2) ≤ 1

3
+

p

6
,

n
− 1

4
− 1

2p
+k( 1

2
− 1

p
)
, if k(p− 2) >

1
3

+
p

6
,

‖hk
2n+1‖k,p ∼


n
− 1

12
− 1

6p
+k( 1

p
− 1

2
)
, if k(p− 2) ≤ 1

3
+

p

6
,

n
− 1

4
− 1

2p
+k( 1

2
− 1

p
)
, if k(p− 2) >

1
3

+
p

6
.

Proposition 2. There exists a positive constant C such that

‖hk
n‖∞ ≤ Cn

k
2
− 1

12 .

Proof. Using the fact that

Hk
2n =

√
n!Γ(n + k + 1

2)

(2n)!Γ(k + 1
2)

Vk(H2n)

(see [7]), where {H2n}n≥0 is the set of classical Hermite polynomials, and Vk is the intertwining
operator between Tk and the usual derivative d

dx given by

Vk(f)(x) =
2−2kΓ(2k + 1)
Γ(k)Γ(k + 1)

∫ 1

−1
f(xt)

(
1− t2

)k−1 (1 + t)dt,

we deduce that

‖hk
2n‖∞ ≤ C

2n
√

n!Γ(n + k + 1
2)√

(2n)!Γ(k + 1
2)

‖h2n‖∞,

where {h2n}n≥0 is the classical Hermite-functions. In view of the following estimate

‖hn‖∞ ≤ Cn−
1
12

given in [4, Lemma 2.1], using Stirling’s formula, we can deduce easily the result.
In the same way, we have

Hk
2n+1 =

√
n!Γ(n + k + 3

2)

(2n + 1)!Γ(k + 1
2)

Vk(H2n+1),

where {H2n+1}n≥0 is the classical Hermite polynomials, we obtain the result as above. �
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Let

ak
n(f) =

∫
R

f(t)hk
n(t)|t|2kdt.

Using the fact that hk
n ∈ Lp′(R, |x|2kdx), where p′ is the conjugate exponent of p, and Hölder’s

inequality, we deduce that

|ak
n(f)| ≤ ‖f‖k,p‖hk

n‖k,p′ .

In view of Propositions 1 and 2, we have the following.

Proposition 3. The series

+∞∑
n=0

e−t(2n+2k+1)ak
n(f)hk

n(x), t > 0,

converges uniformly in x ∈ R.

Definition 1. We define the heat-diffusion integral of f by

Gk(f)(t, x) =
+∞∑
n=0

e−t(2n+2k+1)ak
n(f)hk

n(x), t > 0, x ∈ R.

Proposition 4. The heat-diffusion integral Gk(f) possesses the following integral representation

Gk(f)(t, x) =
∫

R
Pk(t, x, y)f(y)|y|2kdy,

where

Pk(t, x, y) =
+∞∑
n=0

e−t(2n+2k+1)hk
n(x)hk

n(y).

Proof. We obtain an integral form of Gk(f) by writing

Gk(f)(t, x) =
+∞∑
n=0

e−t(2n+2k+1)hk
n(x)

∫
R

f(y)hk
n(y)|y|2kdy

=
∫

R

+∞∑
n=0

e−t(2n+2k+1)hk
n(x)hk

n(y)f(y)|y|2kdy =
∫

R
Pk(t, x, y)f(y)|y|2kdy.

Interchanging the order of summation and integration is justified by Lebesgue’s dominated
convergence theorem since

+∞∑
n=0

e−t(2n+2k+1)

∫
R
|hk

n(x)hk
n(y)f(y)||y|2kdy

≤
+∞∑
n=0

e−t(2n+2k+1)‖hk
n‖∞‖hk

n‖k,p′‖f‖k,p < +∞. �
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Mehler’s formula established by Margit Rösler for Dunkl–Hermite polynomials (see [8]),
adapted to Dunkl–Hermite functions {hk

n}n≥0 reads

+∞∑
n=0

rnhk
n(y)hk

n(z) =
ck

(1− r2)k+ 1
2

e
− 1

2
( 1+r2

1−r2 )(y2+z2)
Ek

(
2ry

1− r2
, z

)
, 0 < r < 1, (1)

where ck is the constant defined by

ck =
(∫

R
e−x2 |x|2kdx

)−1

and Ek is the Dunkl kernel expressed in terms of the normalized Bessel function

Ek(x, y) = jk− 1
2
(ixy) +

xy

2k + 1
jk+ 1

2
(ixy),

where

jα(z) = Γ(α + 1)
+∞∑
n=0

(−1)n( z
2)2n

n!Γ(n + α + 1)
, α ≥ −1

2
.

Set

Uk(r, y, z) :=
+∞∑
n=0

rnhk
n(y)hk

n(z), 0 < r < 1.

Proposition 5. The kernel Uk satisfies the following properties

(i) Uk(r, y, z) ≥ 0,

(ii) Uk(r, y, z) = Uk(r, z, y), (2)

(iii) ‖Uk(r, y, ·)‖k,1 =
(

2
1 + r2

)k+ 1
2

e
− 1

2

(
1−r2

1+r2

)
y2

. (3)

Proof. (i) and (ii) are obvious, let us therefore prove (iii).

‖Uk(r, y, ·)‖k,1 =
ck

(1− r2)k+ 1
2

∫
R

e
− 1

2

(
1+r2

1−r2

)
(y2+z2)

Ek

(
2ry

1− r2
, z

)
|z|2kdz

=
ck

(1− r2)k+ 1
2

e
− 1

2

(
1+r2

1−r2

)
y2
∫

R
e
− 1

2

(
1+r2

1−r2

)
z2

Ek

(
2ry

1− r2
, z

)
|z|2kdz.

Performing the change of variables u =
√

1+r2

1−r2 z, and using the following identity (see [2])∫
R

Ek(x, y)e−
x2

2 |x|2kdx = 2k+ 1
2 c−1

k e
y2

2

we are done. �

Proposition 6. The heat-diffusion integral Gk(f) is a C∞ function on R+ × R satisfying the
differential-difference equation(

Lk,x −
∂

∂t

)
Gk(f)(t, x) = 0, (4)

(here Lk,x means that the operator Lk acts on the variable x).
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Proof. On the one hand, one has for all m ∈ N

∂m

∂tm
Gk(f)(t, x) =

+∞∑
n=0

(−1)m(2n + 2k + 1)me−t(2n+2k+1)ak
n(f)hk

n(x). (5)

On the other hand, it is easy to see that

(hk
n)′(x) = e−

x2

2
∂

∂x
Hk

n(x)− xhk
n(x),

thus for fixed t, the series (5) can be differentiated termwisely with respect to x. A similar
argument holds for higher derivatives and then Gk(f) is C∞ on R+ × R. Differentiating term
by term shows that Gk(f)(t, x) satisfies (4). �

Theorem 1. The heat-diffusion integral Gk(f)(t, ·), t > 0, satisfies

‖Gk(f)(t, ·)‖k,p ≤ (cosh(2t))−(k+ 1
2
)‖f‖k,p.

Proof. Using

Pk(t, x, y) = e−t(2k+1)Uk

(
e−2t, x, y

)
and (3), we obtain∫

R
Pk(t, x, y)|y|2kdy = (cosh(2t))−(k+ 1

2
)e−

1
2

tanh(2t)x2
.

By Hölder’s inequality, it follows that

|Gk(f)(t, x)|p ≤ (cosh(2t))−
p(k+1

2 )

p′

∫
R
|f(y)|p|Pk(t, x, y)||y|2kdy,

where p′ is the conjugate exponent of p. Integration with respect to x and using Fubini’s Theorem
yield

‖Gk(f)(t, ·)‖k,p ≤ (cosh(2t))−
(
k+ 1

2

)
‖f‖k,p. �

2.2 Poisson integral

In this subsection, we introduce the Poisson integral and we give its Lp boundedness.

Definition 2. The Poisson integral Fk(f) of f is defined by

Fk(f)(t, x) =
+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)hk

n(x), t > 0, x ∈ R.

Again the defining series is convergent by Propositions 1 and 2.

Proposition 7. Fk(f) possesses the following integral representation

Fk(f)(t, x) =
∫

R
f(y)Ak(t, x, y)|y|2kdy,

where

Ak(t, x, y) =
t√
4π

∫ +∞

0
Pk(u, x, y)u−

3
2 e−

t2

4u du. (6)

Ak is called the Poisson kernel associated with {hk
n}n≥0.
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Proof. By using the subordination formula

e−β =
β√
4π

∫ +∞

0
e−ss−

3
2 e−

β2

4s ds, β > 0, (7)

we obtain an integral form of Fk(f)(t, x) by writing

Fk(f)(t, x) =
+∞∑
n=0

t
√

2n + 2k + 1√
4π

hk
n(x)

∫ +∞

0
e−ss−

3
2 e−

t2(2n+2k+1)
4s ds

∫
R

f(y)hk
n(y)|y|2kdy

=
t√
4π

+∞∑
n=0

hk
n(x)

∫ +∞

0
u−

3
2 e−u(2n+2k+1)e−

t2

4u du

∫
R

f(y)hk
n(y)|y|2kdy

=
t√
4π

∫
R

f(y)
∫ +∞

0

+∞∑
n=0

e−(2n+2k+1)uhk
n(x)hk

n(y)u−
3
2 e−

t2

4u du|y|2kdy

=
t√
4π

∫
R

f(y)
∫ +∞

0
Pk(u, x, y)u−

3
2 e−

t2

4u du|y|2kdy =
∫

R
f(y)Ak(t, x, y)|y|2kdy.

The same argument used for the heat-diffusion integral implies that Fk(f) is C∞ on R+ × R
and satisfies(

Lk,x +
∂2

∂t2

)
Fk(f)(t, x) = 0. �

Theorem 2. Fk(f)(t, ·) ∈ Lp(R, |x|2kdx) and

‖Fk(f)(t, ·)‖k,p ≤ 2k+ 1
2 e−t

√
2k+1‖f‖k,p.

Proof. One has

Fk(f)(t, x) =
∫

R
Ak(t, x, y)f(y)|y|2kdy =

t√
4π

∫
R

∫ +∞

0
Pk(u, x, y)u−

3
2 e−

t2

4u duf(y)|y|2kdy

=
t√
4π

∫ +∞

0

(∫
R

Pk(u, x, y)f(y)|y|2kdy

)
u−

3
2 e−

t2

4u du

=
t√
4π

∫ +∞

0
Gk(f)(u, x)u−

3
2 e−

t2

4u du.

It follows that

‖Fk(f)(t, ·)‖k,p ≤
t√
4π

∫ +∞

0
‖Gk(f)(u, ·)‖k,pu

− 3
2 e−

t2

4u du ≤ 2k+ 1
2 e−t

√
2k+1‖f‖k,p. �

3 Hilbert transforms

The operator (−Lk) is positive and symmetric in L2(R, |x|2kdx) on the domain C∞
c (R). It may

be easily checked that the operator (−Lk) given by

(−Lk)

(
+∞∑
n=0

ak
n(f)hk

n

)
=

+∞∑
n=0

(2n + 2k + 1)ak
n(f)hk

n

on the domain

Dom(−Lk) =

{
f ∈ L2(R, |x|2kdx) :

+∞∑
n=0

|(2n + 2k + 1)ak
n(f)|2 < +∞

}
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is a self-adjoint extension of (−Lk), has the spectrum {2n + 2k + 1} and admits the spectral
decomposition

(−Lk)f =
+∞∑
n=0

(2n + 2k + 1)ak
n(f)hk

n, f ∈ Dom(−Lk).

Following [10, p. 57] the Hilbert transforms associated with the Dunkl–Hermite operator are
formally given by

Hk
± = (Tk ± x)(−Lk)−

1
2 .

Note, that if f ∼
+∞∑
n=0

ak
n(f)hk

n, then again formally,

H+
k f ∼

+∞∑
n=0

ak
n(f)

θ(n, k)√
2n + 2k + 1

hk
n−1, H−

k f ∼ −
+∞∑
n=0

ak
n(f)

θ(n + 1, k)√
2n + 2k + 1

hk
n+1,

where

θ(n, k) =
{ √

2n if n is even,√
2n + 4k if n is odd.

We use the convention that hk
n−1 = 0 if n = 0. It is clear thatH±

k are defined on L2(R, |x|2kdx) by

H+
k f =

+∞∑
n=0

ak
n(f)

θ(n, k)√
2n + 2k + 1

hk
n−1, H−

k f = −
+∞∑
n=0

ak
n(f)

θ(n + 1, k)√
2n + 2k + 1

hk
n+1.

To proceed to a deeper analysis of these definitions, in particular to consider H±
k on a wider

class of functions, we define the kernels R±
k (x, y) by

R±
k (x, y) =

1√
π

(Tk,x ± x)
∫ +∞

0
Pk(t, x, y)t−

1
2 dt =

1√
π

∫ +∞

0
(Tk,x ± x)Pk(t, x, y)t−

1
2 dt. (8)

It will be shown in Proposition 8 that the second integral in (8) converges.
We have

Pk(t, x, y) =
+∞∑
n=0

e−t(2n+2k+1)hk
n(x)hk

n(y)

=
ck

2k+ 1
2 (sinh(2t))k+ 1

2

e−
1
2

coth(2t)(x2+y2)Ek

(
x

sinh(2t)
, y

)
.

The change of variables 2t = log(1+s
1−s) furnishes a useful variant of (8):

R±
k (x, y) =

√
2√
π

∫ 1

0
(Tk,x ± x)Ks(x, y)

(
log
(

1 + s

1− s

))− 1
2 ds

1− s2
,

where

Ks(x, y) = ck

(
1− s2

4s

)k+ 1
2

e−
1
4

(
s+ 1

s

)
(x2+y2)Ek

((
1− s2

2s

)
x, y

)
.
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We then write

R±
k (x, y) =

√
2√
π

[Rk,1(x, y)±Rk,2(x, y)],

where

Rk,1(x, y) =
∫ 1

0
Tk,xKs(x, y)

(
log
(

1 + s

1− s

))− 1
2 ds

1− s2
,

and

Rk,2(x, y) =
∫ 1

0
xKs(x, y)

(
log
(

1 + s

1− s

))− 1
2 ds

1− s2
.

Proposition 8. There exists a positive constant C such that for (x, y) ∈ ∆c = {(x, y) ∈ R2 :
x 6= y}, the kernels Rk,1(x, y) and Rk,2(x, y) satisfy

|Rk,1(x, y)| ≤ C

|x− y|
, (9)

|Rk,2(x, y)| ≤ C

|x− y|
. (10)

Proof. We start with proving (10). We have

|Rk,2(x, y)| ≤ C

∫ 1

0
β(s)|x|e−

1
4

(
s+ 1

s

)
(x2+y2)Ek

((
1− s2

2s

)
x, y

)
ds,

where we let

β(s) = (1− s)k− 1
2 s−
(
k+ 1

2

) (
log
(

1 + s

1− s

))− 1
2

.

Using the following estimate (see [9])

Ek

((
1− s2

2s

)
x, y

)
≤ e

(
1−s2

2s

)
|xy|,

the same reasoning as in [11, pp. 460–461] in the classical case gives the result. In order to
estimate Rk,1, write

Tk,xKs(x, y) = −1
2

[
s(x + y) +

1
s
(x− y)

]
Ks(x, y)

to see that

|Rk,1(x, y)| ≤ C

∫ 1

0
β(s)

[
s|x + y|+ 1

s
|x− y|

]
e−

1
4

(
s+ 1

s

)
(x2+y2)Ek

((
1− s2

2s

)
x, y

)
ds,

and use the same above arguments used to get the bound for Rk,1. �

Proposition 9. There exists a positive constant C such that for (x, y) ∈ ∆c = {(x, y) ∈ R2 :
x 6= y}, if |x− y| ≥ 2|x− x′|, then

|Rk,1(x, y)−Rk,1(x′, y)| ≤ C|x− x′|
|x− y|2

, (11)

|Rk,2(x, y)−Rk,2(x′, y)| ≤ C|x− x′|
|x− y|2

. (12)
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Proof. Start with

|Rk,2(x, y)−Rk,2(x′, y)| ≤
∫ 1

0

∣∣xKs(x, y)− x′Ks(x′, y)
∣∣ (log

(
1 + s

1− s

))− 1
2 ds

1− s2

≤ C

∫ 1

0
β(s)

∣∣∣∣∣xe−
1
4

(
s+ 1

s

)
(x2+y2)Ek

((
1− s2

2s

)
x, y

)

− x′e−
1
4

(
s+ 1

s

)
(x′2+y2)Ek

((
1− s2

2s

)
x′, y

) ∣∣∣∣∣ds.

Using the following estimates (see [9])∣∣∣∣ ∂

∂x

(
Ek

((
1− s2

2s

)
x, y

))∣∣∣∣ ≤ (1− s2

2s

)
|y|Ek

((
1− s2

2s

)
x, y

)
,

Ek

((
1− s2

2s

)
x, y

)
≤ e

(
1−s2

2s

)
|xy|,

then the same reasoning as in [11, pp. 461–463] in the classical case gives the result.
Considering Rk,1, we have

|Rk,1(x, y)−Rk,1(x′, y)| ≤
∫ 1

0

∣∣Tk,xKs(x, y)− Tk,xKs(x′, y)
∣∣ (log

(
1 + s

1− s

))− 1
2 ds

1− s2

≤ C

∫ 1

0
β(s)

∣∣∣∣∣
[
s(x + y) +

1
s
(x− y)

]
e−

1
4

(
s+ 1

s

)
(x2+y2)Ek

((
1− s2

2s

)
x, y

)

−
[
s(x′ + y) +

1
s
(x′ − y)

]
e−

1
4

(
s+ 1

s

)
(x′2+y2)Ek

((
1− s2

2s

)
x′, y

) ∣∣∣∣∣ds.

The proof of (11) follows the same steps of the one of (12). �

Proposition 10. There exists a positive constant C such that for (x, y) ∈ ∆c = {(x, y) ∈ R2 :
x 6= y}, if |x− y| ≥ 2|y − y′| then

|Rk,2(x, y)−Rk,2(x, y′)| ≤ C|y − y′|
|x− y|2

, (13)

|Rk,1(x, y)−Rk,1(x, y′)| ≤ C|y − y′|
|x− y|2

. (14)

Proof. The proofs of (13) and (14) are quite similar to the ones of (11) and (12). �

Lemma 1. Given m, m = 1, 2, . . . , and f ∈ C∞
c (R) there exists C = Cm,f > 0 such that

|〈f, hk
n〉| ≤ C(2n + 2k + 1)−m,

where

〈f, g〉 =
∫

R
f(x)g(x)|x|2kdx.

Proof.

|〈f, hk
n〉| =

∣∣∣∣∫
R
f(t)hk

n(t)|t|2kdt

∣∣∣∣= ∣∣(−(2n + 2k + 1))−m〈Lm
k f, hk

n〉
∣∣ ≤ C(2n + 2k + 1)−m. �
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Theorem 3. Let f, g ∈ C∞
c (R) with disjoint supports. Then

〈H±
k f, g〉 =

∫
R

∫
R

R±
k (x, y)f(y)g(x)|y|2kdy|x|2kdx. (15)

Proof. We first consider H+
k . Let

f =
+∞∑
n=0

ak
n(f)hk

n and g =
+∞∑
n=0

bk
n(g)hk

n.

Then

H+
k f =

+∞∑
n=0

θ(n, k)√
2n + 2k + 1

ak
n(f)hk

n−1.

The convergence of the three series is in L2(R, |x|2kdx)) and by Parseval’s identity

〈H+
k f, g〉 =

+∞∑
n=0

θ(n, k)√
2n + 2k + 1

ak
n(f)bk

n−1(g). (16)

We will show that the right sides in (15) and (16) coincide. Note that we can see as in Proposi-
tion 8 that∫ +∞

0
|(Tk,x + x)Pk(t, x, y)|t−

1
2 dt ≤ C

|x− y|
.

This result and the assumption made on the supports of f and g show that∫
R

∫
R

∫ +∞

0
|(Tk,x + x)Pk(t, x, y)|t−

1
2 dt|g(x)f(y)||y|2kdy|x|2kdx < +∞. (17)

Now, ∫
R

∫
R

R+
k (x, y)f(y)g(x)|y|2kdy|x|2kdx

=
1√
π

∫
R

∫
R

∫ +∞

0
{(Tk,x + x)Pk(t, x, y)}t−

1
2 dtf(y)g(x)|y|2kdy|x|2kdx

=
1√
π

∫ +∞

0

∫
R

∫
R

{
(Tk,x + x)

(
+∞∑
n=0

e−t(2n+2k+1)hk
n(x)hk

n(y)

)}
g(x)f(y)|x|2kdx|y|2kdyt−

1
2 dt

=
1√
π

∫ +∞

0

∫
R

∫
R

{
+∞∑
n=0

e−t(2n+2k+1)θ(n, k)hk
n−1(x)hk

n(y)

}
g(x)f(y)|x|2kdx|y|2kdyt−

1
2 dt

=
1√
π

∫ +∞

0

∫
R

{
+∞∑
n=0

e−t(2n+2k+1)θ(n, k)bk
n−1(g)hk

n(y)

}
f(y)|y|2kdyt−

1
2 dt

=
1√
π

∫ +∞

0

{
+∞∑
n=0

e−t(2n+2k+1)θ(n, k)ak
n(f)bk

n−1(g)

}
t−

1
2 dt = 〈H+

k f, g〉.

Note that Fubini’s theorem is justified by (17). Recall that

H−
k f = −

+∞∑
n=0

θ(n + 1, k)√
2n + 2k + 1

ak
n(f)hk

n+1,
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then one gets similarly∫
R

∫
R

R−
k (x, y)f(y)g(x)|y|2kdy|x|2kdx

=
1√
π

∫
R

∫
R

∫ +∞

0
{(Tk,x − x)Pk(t, x, y)}t−

1
2 dtf(y)g(x)|y|2kdy|x|2kdx

= −
+∞∑
n=0

θ(n + 1, k)√
2n + 2k + 1

ak
n(f)bk

n+1(g) = 〈H−
k f, g〉. �

Theorem 4. For almost every x in R, the Hilbert transforms are given by

H±
k f(x) = lim

ε−→0

∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy.

Proof. We have∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy =

∫
|x−y|>ε

f(y)|y|
2k
p |y|

2k
p′ R±

k (x, y)dy =
∫
|x−y|>ε

g(y)W±
k (x, y)dy,

where p′ is the conjugate exponent of p,

g(y) = f(y)|y|
2k
p , g ∈ Lp(R, dx), W±

k (x, y) = |y|
2k
p′ R±

k (x, y),

W±
k (x, y) are Calderón–Zygmund kernels (see Propositions 8, 9 and 10). It follows that

lim
ε−→0

∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy = lim

ε−→0

∫
|x−y|>ε

g(y)W±
k (x, y)dy

exist for almost every x (see [5, p. 55]). �

Remark 1. For f ∈ L2(R, |x|2kdx), we have

Fk(H±
k f)(x) = ±iH±

k (Fkf)(x),

where Fk is the Plancherel Dunkl transform, (see [1]).

Theorem 5. The operators H±
k are bounded on Lp(R, |x|2kdx), 1 < p < +∞.

Proof. Consider the truncated operators

H±
ε,kf(x) =

∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy,

‖H±
k f‖p

k,p =
∫

R
|H±

k f(x)|p|x|2kdx =
∫

R
| lim
ε−→0

H±
ε,kf(x)|p|x|2kdx

=
∫

R
lim

ε−→0
|H±

ε,kf(x)|p|x|2kdx =
∫

R
lim inf
ε−→0

|H±
ε,kf(x)|p|x|2kdx

≤ lim inf
ε−→0

∫
R
|H±

ε,kf(x)|p|x|2kdx = lim inf
ε−→0

∫
R

∣∣|x| 2k
p H±

ε,kf(x)
∣∣pdx.

Yet,

|x|
2k
p H±

ε,kf(x) =
∫
|x−y|>ε

f(y)|x|
2k
p R±

k (x, y)|y|2kdy =
∫
|x−y|>ε

g(y)Z±
k (x, y)dy,
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where

g(y) = f(y)|y|
2k
p , g ∈ Lp(R, dx), Z±

k (x, y) = |x|
2k
p |y|

2k
p′ R±

k (x, y).

Z±
k (x, y) are Calderón–Zygmund kernels (see Propositions 8, 9 and 10). Let

S±g (x) =
∫

R
g(y)Z±

k (x, y)dy.

The operators S±g are Calderón–Zygmund type associated with the Calderón–Zygmund kernels
Z±

k (x, y) (see [5, p. 48]), then

sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

g(y)Z±
k (x, y)dy

∣∣∣∣∣
are bounded on Lp(R, dx) for 1 < p < +∞ (see [5, p. 56]). Consequently, there exists a positive
constant C = Cp such that if f ∈ Lp(R, |x|2kdx) then

‖H±
k f‖k,p ≤ C‖f‖k,p. �

Lemma 2. There exists a positive constant C such that for f ∈ L1(R, |x|2kdx), λ > 0, we have∫
{x∈R:supε>0 |H

±
ε,kf(x)|>λ}

dx ≤ C

λ
‖f‖k,1.

Proof. We have

H±
ε,kf(x) =

∫
|x−y|>ε

f(y)R±
k (x, y)|y|2kdy =

∫
|x−y|>ε

g(y)W±
k (x, y)dy,

where

g(y) = f(y)|y|
2k
p and W±

k (x, y) = |y|
2k
p′ R±

k (x, y).

Let

S±g (x) =
∫

R
g(y)W±

k (x, y)dy.

The operators S±g are Calderón–Zygmund operators associated with the Calderón–Zygmund ker-
nels W±

k (x, y) then there exists a positive constant C such that for λ > 0 and f ∈ L1(R, |x|2kdx),
we have∫

{x∈R:supε>0 |H
±
ε,kf(x)|>λ}

dx ≤ C

λ
‖f‖k,1. �

As a by-product, we have the following.

Theorem 6. There exists a positive constant C such that for f ∈ L1(R, |x|2kdx), we have

sup
λ>0

(
λ

∫
{x∈R:|H±

k f(x)|>λ}
dx

)
≤ C‖f‖k,1.
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4 Conjugate Poisson integrals

Dunkl–Hermite functions allow to define the conjugate Poisson integrals.

Definition 3. The conjugate Poisson integrals f±k (t, x) of f are defined by

f+
k (t, x) =

+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)

θ(n, k)√
2n + 2k + 1

hk
n−1(x),

f−k (t, x) =
+∞∑
n=0

e−t
√

2n+2k+1ak
n(f)

θ(n + 1, k)√
2n + 2k + 1

hk
n+1(x).

Remark 2. The same arguments used for the heat-diffusion integral show that f±k (t, x) ∈
C∞(R+ × R) and satisfy the differential-difference equations

(i)
(

Lk,x +
∂2

∂t2

)
f±k (t, x) = ±2f±k (t, x), (18)

(ii) (Tk,x ± x)Fk(f)(t, x) = ∓ ∂

∂t
f±k (t, x), (19)

where Fk(f)(t, x) is the Poisson integral of f .

We now use (19) to find an integral formula for f±k (t, x). Using the subordination formula (7),
taking β = t

√
2n + 2k + 1, making the change of variables s −→ (2n + 2k + 1)u, and then

substituting r = e−2u leads to the formula

e−t
√

2n+2k+1 =
∫ 1

0
L(t, r)rn+k+ 1

2 dr,

where

L(t, r) =
te

t2

2 log r

(2π)
1
2 r(− log r)

3
2

.

Then if Ak(t, x, y) denotes the Poisson kernel (6), we have

Ak(t, x, y) =
+∞∑
n=0

e−t
√

2n+2k+1hk
n(x)hk

n(y) =
+∞∑
n=0

hk
n(x)hk

n(y)
∫ 1

0
L(t, r)rn+k+ 1

2 dr

=
∫ 1

0

+∞∑
n=0

rnhk
n(x)hk

n(y)L(t, r)rk+ 1
2 dr =

∫ 1

0
L(t, r)Uk(r, x, y)rk+ 1

2 dr.

Combining this and (1) we obtain

(Tk,x + x)Ak(t, x, y)

=
√

2√
π

cke
− 1

2
(x2+y2)

∫ 1

0

(y − rx)te
t2

2 log r e
− r2x2+r2y2

1−r2

(− log r)
3
2 (1− r2)k+ 3

2

Ek(
2rx

1− r2
, y)rk+ 1

2 dr. (20)

Now

(Tk,x + x)Fk(f)(t, x) =
∫

R
(Tk,x + x)Ak(t, x, y)f(y)|y|2kdy. (21)
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From Propositions 1 and 2, it is easy to check that f+
k (t, x) −→ 0 as t −→ +∞ and so

f+
k (t, x) = −

∫ +∞

t

∂

∂t
f+

k (u, x)du.

Using (21), (20) and (19) we find after integration

f+
k (t, x) =

∫
R

Qk(t, x, y)f(y)|y|2kdy,

where

Qk(t, x, y) = e−
1
2
(x2+y2)Q1,k(t, x, y)

and

Q1,k(t, x, y) =
∫ 1

0

(y − rx)
(1− r2)k+2

e
− r2x2+r2y2

1−r2 Ek

(
2rx

1− r2
, y

)
W1,k(t, r)dr

with

W1,k(t, r) =
√

2√
π

ck

(
1− r2

− log r

) 1
2

e
t2

2 log r rk+ 1
2 .

We now use (19) to find an integral formula for f−k (t, x)

(Tk,x − x)Ak(t, x, y)

=
√

2√
π

cke
− 1

2
(x2+y2)

∫ 1

0

(ry − x)te
t2

2 log r e
− r2x2+r2y2

1−r2

(− log r)
3
2 (1− r2)k+ 3

2

Ek

(
2rx

1− r2
, y

)
rk− 1

2 dr. (22)

Now

(Tk,x − x)Fk(f)(t, x) =
∫

R
(Tk,x − x)Ak(t, x, y)f(y)|y|2kdy. (23)

The same reasoning as above gives f−k (t, x) −→ 0 as t −→ +∞ and so

f−k (t, x) = −
∫ +∞

t

∂

∂t
f−k (u, x)du.

Using (23), (22) and (19) we find after integration

f−k (t, x) =
∫

R
Mk(t, x, y)f(y)|y|2kdy,

where

Mk(t, x, y) = e−
1
2
(x2+y2)M1,k(t, x, y)

and

M1,k(t, x, y) =
∫ 1

0

(x− ry)e−
r2x2+r2y2

1−r2

(1− r2)k+2
Ek

(
2rx

1− r2
, y

)
Yk(t, r)dr,

with

Yk(t, r) =
√

2√
π

ck

(
1− r2

− log r

) 1
2

e
t2

2 log r rk− 1
2 .
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Theorem 7. There exists a positive constant C such that for 1 < p < +∞, f ∈ Lp(R, |x|2kdx),
we have

‖f±k (t, ·)‖k,p ≤ Ce−t
√

2k+1‖f‖k,p.

Proof. We have

‖f±k (t, ·)‖k,p = ‖ ±H±
k Fk(f)(t, ·)‖k,p ≤ C‖Fk(f)(t, ·)‖k,p ≤ Ce−t

√
2k+1‖f‖k,p. �

Theorem 8. There exists a positive constant C such that for f ∈ L1(R, |x|2kdx), we have

sup
λ>0

(
λ

∫
{x∈R:|f±k (t,x)|>λ}

dx

)
≤ Ce−t

√
2k+1‖f‖k,1.

Proof. We have

sup
λ>0

(
λ

∫
{x∈R:|f±k (t,x)|>λ}

dx

)
= sup

λ>0

(
λ

∫
{x∈R:|±H±

k Fk(f)(t,x)|>λ}
dx

)
≤ C‖Fk(f)(t, ·)‖k,1 ≤ Ce−t

√
2k+1‖f‖k,1. �
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