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Abstract. The one-dimensional Dunkl operator Dk with a non-negative parameter k, is
considered under an arbitrary nonlocal boundary value condition. The right inverse operator
of Dk, satisfying this condition is studied. An operational calculus of Mikusiński type is
developed. In the frames of this operational calculi an extension of the Heaviside algorithm
for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential
equations P (Dk)u = f with a given polynomial P is proposed. The solution of these
equations in mean-periodic functions reduces to such problems. Necessary and sufficient
condition for existence of unique solution in mean-periodic functions is found.
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Here the one-dimensional Dunkl operators Dkf(x) = df(x)
dx + k f(x)−f(−x)

x , k ≥ 0, in C1(R) under
a nonlocal boundary value condition Φ{f} = 0 with an arbitrary non-zero linear functional Φ
in C(R) are considered. The right inverse operators Lk of Dk, defined by DkLkf = f and
Φ{Lkf} = 0 are studied. To this end, the elements of corresponding operational calculi are
developed. A convolution product f ∗ g on C(R), such that Lkf = {1} ∗ f , is found. Further,
the convolution algebra (C(R), ∗) is extended to its ring Mk of the multipliers. (C(R), ∗) may
be conceived as a part of Mk due to the embedding f ↪→ f∗. The ring Mk of multiplier
fractions A

B , such that A,B ∈ Mk and B being non-divisor of zero in the operator multiplication,
is constructed.

A Heaviside algorithm for effective solution of nonlocal Cauchy boundary value problems
for Dunkl functional-differential equations P (Dk)u = f with polynomials P is developed. The
solution of these equations in mean-periodic functions reduces to such problems. Necessary and
sufficient condition for existence of unique solution in mean-periodic functions is found.

The operational calculus, developed here, is a generalization of the nonlocal operational
calculus for D0 = d

dx (see Dimovski [6]). Some background material about the Dunkl operators
is taken from our previous paper [7] without proofs.

1 The right inverse operators of Dk in C(R)
and corresponding Taylor formulae

Let Lk denote an arbitrary right inverse operator of Dk in C(R). First, we consider a special
right inverse Λk of Dk, where y(x) = Λkf(x) for f ∈ C(R) is the solution of the equation
Dky = f(x) with initial condition y(0) = 0.

?This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
is available at http://www.emis.de/journals/SIGMA/Dunkl operators.html
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Lemma 1. The right inverse operator Λk of Dk, defined by the initial condition Λkf(0) = 0 has
the form

Λkf(x) =
∫ x

0

[
fo(t) +

(
t

x

)2k

fe(t)

]
dt,

where fe and fo are the even and the odd parts of f , respectively.

The proof is a matter of a simple check (see [7, p. 198]).
In the general case, an arbitrary right inverse operator Lk of Dk has a representation of the

form

Lkf(x) =
∫ x

0

[
fe(t) +

(
t

x

)2k

fo(t)

]
dt + C.

In order Lk to be a linear operator, the additive constant C should depend on f and to be
a linear functional Ψ{f} in C(R). Hence, an arbitrary linear right inverse operator Lk of Dk

in C(R) has the form

Lkf(x) = Λkf(x) + Ψ{f},

with a linear functional Ψ in C(R).
According to the general theory of right invertible operators (Bittner [2], Przeworska-Role-

wicz [12]), an important characteristic of Lk is its initial projector

Ff(x) = f(x)− LkDkf(x) = Φ{f}. (1)

It maps C1(R) onto ker Dk = C, i.e. it is a linear functional Φ on C1(R). This identity written
in the form

LkDkf(x) = f(x)− Φ{f}. (2)

will be used later. Expressing Φ by Ψ, we obtain

Φ{f} = f(0)−Ψ{Dkf}.

Let us note that Φ{1} = 1, which expresses the projector property of F .
Considering the right inverse operator Lk of Dk, it is more convenient to look on Lkf = y as

the solution of an elementary boundary value problem of the form

Dky = f, Φ{y} = 0,

assuming that Φ is a given linear functional on C(R) with Φ{1} = 1. This restriction of the
class of right inverse operators Lk of Dk is adequate when we are to consider nonlocal Cauchy
problems for Dunkl equations.

Theorem 1. Let Φ : C(R) → C be a linear functional, such that Φ{1} = 1. Then the right
inverse operator Lk of Dk, defined by the boundary value condition Φ{Lkf} = 0 has the form

Lkf(x) =
∫ x

0

[
fe(y) +

(y

x

)2k
fo(y)

]
dy − Φt

{∫ t

0

[
fe(y) +

(y

t

)2k
fo(y)

]
dy

}
.

The proof follows immediately from Lemma 1 and the condition Φ{1} = 1.
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Definition 1. The polynomials

Ak,n(x) = Ln
k{1}(x), n = 0, 1, 2, . . . (3)

are said to be Dunkl–Appell polynomials.

Lemma 2. The Dunkl–Appell polynomials system {Ak,n(x)}∞n=0 satisfies the recurrences

Ak,0(x) ≡ 1, and DkAk,n+1(x) = Ak,n(x), Φ{Ak,n+1} = 0, n ≥ 0 (4)

and conversely, (4) implies (3).

The check is immediate. Similar polynomials are introduced implicitly by M. Rösler and
M. Voit [14, p. 346].

Lemma 3 (Taylor formula with remainder term). If f ∈ C(N)(R), then

f(x) =
N−1∑
j=0

Φ
{
Dj

kf
}
Ak,j(x) + LN

k

(
DN

k f
)
(x), (5)

where Ak,j(x) = Lj
k{1}(x) are Dunkl–Appell polynomials.

This formula is an analogue of the particular case of the Taylor formula known as the Maclau-
rin formula.

Proof. Delsarte [4], Bittner [2], and Przeworska-Rolewicz [12] give variants of the Taylor for-
mula for right invertible operators in linear spaces. In our case (5) can be written as

I =
N−1∑
j=0

Lj
kFDj

k + LN
k DN

k ,

where I is the identity operator and F = I −LkDk. In functional form the above identity takes
the form

f(x) =
N−1∑
j=0

Lj
kFDj

kf(x) + LN
k DN

k f(x),

where the initial projector F of Lk (1) is the linear functional Φ:

Ff(x) = f(x)− LkDkf(x) = Φ{f}.

F projects the space C(R) onto the space C of the constants. Hence

f(x) =
N−1∑
j=0

Φ
{
Dj

kf
}
Lj

k{1}(x) + LN
k DN

k f(x),

which is the Taylor formula (5). �
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2 Convolutional products for the right inverses Lk of Dk

In Dunkl [8, Theorem 5.1] the similarity operator

Vkf(x) = bk

∫ 1

−1
f(xy)(1− y)k−1(1 + y)kdy, bk =

Γ(2k + 1)
22kΓ(k)Γ(k + 1)

is found, which transforms the differentiation operator D = d
dx into Dk:

VkD = DkVk.

Usually this operator is called intertwining operator. The constant bk is chosen to ensure that
Vk{1} = 1.

The problem of inverting the Dunkl intertwining operator Vk is discussed by several authors,
see e.g. Trimèche [15], Betankor, Sifi, Trimèche [1], but we will use the explicit formulae from
Ben Salem and Kallel [3, p. 159].

Denoting Sf(x) = 1
2x

df(x)
dx , the inverse V −1

k of Vk has the following representations:
(i) If k = n + r is non-integer with integer part n and r ∈ (0, 1), then

V −1
k f(x) = ck

[
|x|Sn+1

{∫ |x|

0

(
x2 − y2

)−r
fe(y)y2kdy

}

+ sign(x)Sn+1

{∫ |x|

0

(
x2 − y2

)−r
fo(y)y2k+1dy

}]
, x 6= 0,

where ck = 2
√

π

Γ(n+r+ 1
2)Γ(1−r)

.

(ii) If k is a non-negative integer, then

V −1
k f(x) =

√
π

Γ
(
k + 1

2

)[xSk
(
x2k−1fe(x)

)
+ Sk

(
x2kfo(x)

)]
, x 6= 0.

Vk transforms C(R) into a proper subspace C̃k = Vk(C(R)) of it. Vk is a similarity from

a right inverse operator Λ of D0 =
d

dx
to Lk. In order to specify the operator Λ let us define

the linear functional

Φ̃{f} = (Φ ◦ Vk){f}

in C̃k. Then define Λ : C̃k → C̃k to be the solution y = Λf̃ of the elementary boundary value
problem

D0y(x) ≡ y′(x) = f̃(x), Φ̃{y} = 0.

This solution has the form

Λf̃(x) =
∫ x

0
f̃(y)dy − Φ̃t

{∫ t

0
f̃(τ)dτ

}
.

Lemma 4. The following similarity relation holds

VkΛ = LkVk.
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Proof. Applying Vk to the defining equation D(Λf̃) = f̃ , one obtains

VkD(Λf̃) = Vkf̃ = f or Dk(VkΛf̃) = Vkf̃ = f.

In fact, the boundary value condition Φ̃{Λf̃} = 0 can be written as Φ{VkΛf̃} = 0. Hence
u = VkΛf̃ is the solution of the boundary value problem Dku = f , Φ{u} = 0, i.e. u = Lkf .
Therefore

VkΛV −1
k f = Lkf or VkΛ = LkVk. �

The similarity relation (4) allows to introduce a convolution structure ∗ : C(R) × C(R) →
C(R), such that Lk to be the convolution operator Lk = {1}∗ in C(R).

The operator Λ is defined not only in C̃k, but in the whole space C(R). This allows to
introduce a convolution structure ∗̃ : C(R)× C(R) → C(R).

Lemma 5. The operation

(f̃ ∗̃ g̃)(x) = Φ̃t

{∫ x

t
f̃(x + t− τ)g̃(τ)dτ

}
(6)

is a bilinear, commutative and associative operation in C̃k = Vk(C(R)) such that

Λf̃ = {1} ∗̃ f̃ . (7)

It satisfies the boundary value condition Φ̃{f̃ ∗̃ g̃} = 0 for arbitrary f̃ and g̃ in C(R).

The proof of the assertion that f̃ ∗̃ g̃ is an inner operation in C̃k follows directly from the
explicit inversion formula for Vk (see Xu [16] or Ben Salem and Kallel [3, Theorem 1.1]). In
Dimovski [5, p. 52] it is proved that (6) is a bilinear, commutative and associative operation
in C(R), and hence in C̃k = Vk(C(R)). The second relation (7) is obvious. The proof of
Φ̃{f̃ ∗̃g̃} = 0 is also elementary (see Dimovski [5, p. 54]).

Theorem 2. The operation

f ∗ g = D2n
k Vk

[(
V −1

k Ln
kf
)
∗̃
(
V −1

k Ln
kg
)]

, (8)

where n is the integer part of k, is a convolution of Lk in C(R) such that

Lkf = {1} ∗ f (9)

and the boundary value condition Φ{f ∗ g} = 0 is satisfied for arbitrary f and g in C(R).

Proof. The assertion of the theorem follows from Lemmas 5 and 4 and a general theorem of
Dimovski [5, Theorem 1.3.6, p. 26]. This convolution is introduced in Dimovski, Hristov and
Sifi [7]. �

Remark 1. The convolution (8) reduces to

f ∗ g = Vk

[(
V −1

k f
)
∗̃
(
V −1

k g
)]

for n = 0, i.e. when 0 < k < 1.

From (9) and Definition 1 it follows that

LN+1
k f = {Ak,N} ∗ f,

where Ak,N is the Dunkl–Appell polynomial of degree exactly N . This allows also to state the
Taylor formula (5) with remainder term in the Cauchy form:

Lemma 6. If f ∈ C(N)(R), then

f(x) =
N−1∑
j=0

Φ
{
Dj

kf
}
Ak,j(x) +

(
Ak,N−1 ∗DN

k f
)
(x),

where Ak,j(x), j = 0, 1, 2, . . . , N − 1, are the Dunkl–Appell polynomials Ak,j(x) = Lj
k{1}.
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3 The ring of multipliers of the convolutional algebra (C(R), ∗)

The convolutional algebras (C(R), ∗) with convolution product (8), are annihilators-free (or
algebras without order in the terminology of Larsen [9, p. 13]). This means that in each of these
algebras f ∗ g = 0, ∀ g ∈ C(R), implies f = 0.

Definition 2. An operator A : C(R) → C(R) is said to be a multiplier of the convolutional
algebra (C(R), ∗) iff

A(f ∗ g) = (Af) ∗ g (10)

for arbitrary f, g ∈ C(R).

As it is shown in Larsen [9], it is not necessary to assume neither that A is a linear operator,
nor that it is continuous in C(R). These properties of the multipliers follow automatically
from (10). Something more, a general result of Larsen [9, p. 13] implies

Theorem 3. The set of the multipliers of the convolutional algebra (C(R), ∗) form a commuta-
tive ring Mk.

The simplest multipliers of (C(R), ∗) are the numerical operators [α] for α ∈ C, defined by

[α]f = αf, ∀ f ∈ C(R),

and the convolutional operators f∗ for f ∈ C(R), defined by

(f∗)g = f ∗ g, ∀ g ∈ C(R).

Further we need the following characterization result for the multipliers of (C(R), ∗):

Theorem 4. A linear operator A : C(R) → C(R) is a multiplier of (C(R), ∗) iff it admits
a representation of the form

Af = Dk(m ∗ f), (11)

where the function m = A{1} is such that m ∗ f ∈ C1(R) for all f ∈ C(R).

Proof. Let A : C(R) → C(R) be a multiplier of (C(R), ∗). The operator Lkf = {1} ∗ f is also
a multiplier. Then, according to Theorem 3,

ALk = LkA.

Applying A to Lkf = {1} ∗ f , we get

LkAf = ALkf = A({1} ∗ f) = (A{1}) ∗ f.

The identity

Lk(Af) = m ∗ f (12)

with m = A{1} is possible only if m ∗ f ∈ C1(R) for each f ∈ C(R). It remains to apply Dk

to (12) in order to obtain (11).
Conversely, let A : C(R) → C(R) be the operator defined by (11), i.e. Af = Dk(m∗f), where

m ∈ C(R) is such that m ∗ f ∈ C1(R) for all f ∈ C(R). Then

A(f ∗ g) = Dk(m ∗ (f ∗ g)) = Dk((m ∗ f) ∗ g).

But m ∗ f = LkDk(m ∗ f) due to formula (2) since Φ(m ∗ f) = 0 by Theorem 2. Then

A(f ∗ g) = DkLk[Dk(m ∗ f) ∗ g] = (Af) ∗ g.

Hence A is a multiplier of the convolution algebra (C(R), ∗). �
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The specification of the function m = A{1} is, in general, a nontrivial problem even in the
case of the simplest Dunkl operator D0 = d

dx (the usual differentiation). This could be confirmed
by the following two examples:

Example 1. If Φ{f} = f(0), then m is a continuous function of locally bounded variation, i.e.
m ∈ BV ∩ C(R) (see Dimovski [5, p. 26]).

Example 2. Let Φ{f} =
∫ 1
0 f(x)dx. Then m ∈ C(R) can be arbitrary (see Dimovski [5, p. 69]).

4 Nonlocal operational calculi for Dk

Our aim here is to develop a direct operational calculus for solution of the following nonlocal
Cauchy problem for the operator Dk: Solve the equation P (Dk)u = f with a polynomial P and
a given f ∈ C(R) under the boundary value conditions Φ{Dj

ku} = αj , j = 0, 1, 2, . . . ,deg P − 1,
where αj are given constants and Φ is a nonzero linear functional on C(R).

This is a special case of the problems considered by R. Bittner [2] and D. Przeworska-
Rolewicz [12] for an arbitrary right invertible operator D instead of Dk.

Our intention here is to propose constructive results and to obtain an explicit solution of the
boundary value problems considered. This is done by means of an operational calculus essential
part of which is an extension of the Heaviside algorithm.

This operational calculus is developed using a direct algebraic approach based on the con-
volution (8). Instead of Mikusiński’s method [10] of convolutional fractions f

g , we follow an
alternative approach of multiplier fractions A

B , where A and B are multipliers of the convolu-
tional algebra (C(R), ∗) and B is a non-divisor of zero in the operator multiplication.

Let us consider the ring Mk of the multipliers of the convolutional algebra (C(R), ∗). The
correspondence α 7→ [α] is an embedding of C into Mk. The correspondence f 7→ f∗ is an
embedding of (C(R), ∗) in Mk. Hence, we may consider C and C(R) as parts of Mk.

Mk is a commutative ring (Theorem 3). The subset Nk of Mk, consisting of the non-zero
non-divisors of zero with respect to the operator multiplication in Mk, is nonempty. Indeed, at
least the identity operator I and the right inverse Lk of Dk belong to Nk. In addition, Nk is
a multiplicative subset, i.e. if A,B ∈ Nk, then AB ∈ Nk.

Consider the Cartesian product

Mk ×Nk = {(A,B) : A ∈ Mk, B ∈ Nk}

and introduce the equivalence relation

(A,B) ∼ (A′, B′) ⇔ AB′ = BA′. (13)

Definition 3. The set Mk = Mk×Nk/∼ obtained by the factorization of Mk×Nk with respect
to the equivalence relation (13) is said to be the ring of multiplier fractions.

Mk may be considered both as an extension of the field C of the complex numbers and of
the ring (C(R), ∗). Formally, this is seen by the embeddings

α ↪→ [α]
I

and f ↪→ f∗
I

.

In the sequel we denote the identity operator I simply by 1. The multiplication operation of
the two elements p and q in Mk will be denoted simply by pq. Therefore, instead of f ∗ g we
will write fg.
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For our aims the most important elements of Mk are

Lk = {1} and Sk =
1
Lk

.

The fraction Sk with the identity operator as numerator and with Lk as denominator will be
called algebraic Dunkl operator. Its relation to the ordinary Dunkl operator Dk is given by the
following theorem:

Theorem 5. Let f ∈ C1(R). Then

Dkf = Skf − Φ{f}. (14)

Note that identity (14) should be interpreted as

(Dkf)∗ = Sk(f∗)− [Φ{f}],

where (Dkf)∗ and (f∗) are to be understood as convolution operators and [Φ{f}] as the nu-
merical operator determined by the number Φ{f}. Sk is neither convolutional nor numerical
operator, but an element of Mk.

Proof. In Section 1 (equality (2)) we have seen that

LkDkf = f − Φ{f},

where Φ{f} is the corresponding constant function {Φ{f}}. Considered as an operator identity,
this can be written as (LkDkf)∗ = f ∗ −{Φ{f}}∗ or Lk[Dk(f∗)] = f ∗ −Φ{f}Lk. Hence

Lk(Dkf)∗ = (f∗)− Φ{f}Lk.

It remains to multiply by Sk to obtain (14). �

Relation (14) may be characterized as the basic formula of our operational calculus. Using
it repeatedly, we obtain

Corollary 1. Let f ∈ C(N)(R). Then

DN
k f = SN

k f −
N−1∑
j=0

Φ
{
Dj

kf
}
SN−j−1

k . (15)

Remark 2. The last formula is equivalent to the Taylor formula (5) in Section 1.

Let P (λ) = a0λ
m +a1λ

m−1 + · · ·+am−1λ+am, a0 6= 0, and Φ be a non-zero linear functional
on C(R).

Definition 4. The problem for solving the Dunkl functional-differential equation

P (Dk)u = f, f ∈ C(R)

under the boundary value conditions

Φ
{
Dj

ku
}

= αj , j = 0, 1, 2, . . . ,m− 1

is called a nonlocal Cauchy problem determined by the functional Φ.



Nonlocal Operational Calculi for Dunkl Operators 9

By means of (14) and (15) it is possible to “algebraize” any nonlocal Cauchy boundary value
problem.

The simplest nonlocal Cauchy problem for Dk, determined by a linear functional Φ in C(R)
concerns the functional-differential equation

Dku(x)− λu(x) = f(x)

with the boundary condition Φ{u} = 0.
It is known that the solution of the homogeneous equation

Dku(x)− λu(x) = 0

under the initial condition u(0) = 1 is

uk(λx) = jk− 1
2
(iλx) +

λx

2k + 1
jk+ 1

2
(iλx)

(see Ben Salem and Kallel [3, p. 161]), where jα(x) denotes the modified (normalized) Bessel
function

jα(x) = 2αΓ(α + 1)
Jα(x)

xα
, x 6= 0 and jα(0) = 1.

We introduce the Dunkl indicatrix of the functional Φ as the following entire function of
exponential type:

Ek(λ) = Φξ{uk(λξ)} = Φξ

{
jk− 1

2
(iλξ) +

λξ

2k + 1
jk+ 1

2
(iλξ)

}
.

Lemma 7. The function uk(λx)
Ek(λ) is the generating function of the Dunkl–Appell polynomials

system, i.e.

uk(λx)
Ek(λ)

=
∞∑

n=0

λnAk,n(x).

Here we will skip the simple proof. The linear operator Lk,λ defined as the solution u(x) =
Lk,λf(x) of the nonlocal Cauchy boundary value problem

Dku− λu = f, Φ{u} = 0,

is said to be the resolvent operator of the Dunkl operator under the boundary value condition
Φ{u} = 0.

Theorem 6. The resolvent operator Lk,λ admits the convolutional representation

Lk,λf(x) = lk(λ, x) ∗ f(x), where lk(λ, x) =
uk(λx)
Ek(λ)

.

Proof. We will use the formula

Dk(f ∗ g) = (Dkf) ∗ g + Φ{f}g

which is true under the assumption f ∈ C1(R). It follows from a more general result of Dimovski
[5, Theorem 1.38], but in our case it can be verified directly. It gives

Dk{lk(λ, x) ∗ f(x)} = Dklk(λ, x) ∗ f(x) + Φξ{lk(λ, ξ)}f(x) = λ{lk(λ, x) ∗ f(x)}+ f(x).

Hence u = {lk(λ, x) ∗ f(x)} satisfies the equation Dku − λu = f . It remains to verify the
boundary value condition Φ{u} = 0. But it follows from the basic property Φ{f ∗ g} = 0 of the
convolution (Theorem 2). �
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The resolvent operator Lk,λ exists for each λ with Ek(λ) 6= 0. The zeros of Ek(λ) are the
eigenvalues of the boundary value problem Dku− λu = 0, Φ{u} = 0. They form an enumerable
set {λ1, λ2, . . . , λn, . . . } except in the case when Φ is a Dirac functional Φ{f} = f(a), when
Ek(λ) 6= 0 for all λ ∈ C.

It is easy to find the solution of our problem inMk. Using the basic formula of the operational
calculus (see Theorem 5), we have Dku = Sku since Φ{u} = 0, and then

Sku− λu = f or (Sk − λ)u = f.

In order to write the solution

u =
1

Sk − λ
f

we must be sure that Sk − λ is non-divisor of zero.

Lemma 8. Sk − λ is a divisor of zero in Mk iff Ek(λ) = 0.

Proof. Let Sk − λ be a divisor of zero in Mk. Then there exists a multiplier fraction A
B such

that A 6= 0 and

(Sk − λ)
A

B
= 0,

which is equivalent to (Sk − λ)A = 0. Since A 6= 0, then there is a function g ∈ C(R) such that
Ag = v 6= 0. Then

(Sk − λ)v = 0.

Multiplying by Lk we get

(1− λLk)v = 0 or v − λLkv = 0.

Since Φ(Lkv) = 0 by the definition of Lk (Section 1), then Φ{v} = 0.
Applying Dk, we get Dkv − λv = 0, Φ{v} = 0. According to Ben Salem and Kallel [3], all

the non-zero solutions of Dkv − λv = 0 are v = C(jk− 1
2
(iλx) + λx

2k+1jk+ 1
2
(iλx)) with a constant

C 6= 0. The boundary value condition Φ{v} = 0 is equivalent to Ek(λ) = 0.
Conversely, if Ek(λ) = 0, then there exists a solution v 6= 0 of the eigenvalue problem

Dkv − λv = 0, Φ{v} = 0. For this v we have

(Sk − λ)v = 0

and hence Sk − λ is a divisor of zero in Mk. �

Theorem 7. Let λ ∈ C be such that Ek(λ) 6= 0. Then

1
Sk − λ

= {lk(λ, x)}∗ =
1

Ek(λ)

{
jk− 1

2
(iλx) +

λx

2k + 1
jk+ 1

2
(iλx)

}
∗ . (16)

Proof. We have seen that

Lk,λf(x) = {lk(λ, x)} ∗ f.

But for the solution u = Lk,λf of the boundary value problem Dku− λu = f , Φ{u} = 0, in the
case Ek(λ) 6= 0 we found

u =
1

Sk − λ
f.

Since the convolution ∗ is annihilators-free, then (16) follows from the identity

1
Sk − λ

f = {lk(λ, x)} ∗ f. �
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Corollary 2. If Ek(λ) 6= 0, then

1
(Sk − λ)m

=
{

1
(m− 1)!

∂m−1

∂λm−1
lk(λ, x)

}
∗ .

5 Heaviside algorithm for solving nonlocal Cauchy problems
for Dunkl operators

Now we are to apply the elements of the operational calculus developed in the previous section
to effective solution of nonlocal Cauchy boundary value problems of the form

P (Dk)u = f, Φ(Dj
ku) = αj , j = 0, 1, 2, . . . ,deg P − 1, (17)

with given αj ∈ C.
To this end we extend the classical Heaviside algorithm, which is intended for solving initial

value problems for ordinary linear differential equations with constant coefficients to the case
of Dunkl functional-differential equations.

The extended Heaviside algorithm starts with the algebraization of problem (17). It reduces
the problem to a single algebraic equation of the first degree in Mk.

Let P (λ) = a0λ
m + a1λ

m−1 + · · · + am−1λ + am be a given polynomial of m-th degree, i.e.
with a0 6= 0.

The consecutive steps of the algorithm are the following:
1) Factorize P (λ) in C to

P (λ) = a0(λ− µ1)κ1(λ− µ2)κ2 · · · (λ− µs)κs ,

where µ1, µ2, . . . , µs are the distinct zeros of P (λ) and κ1, κ2, . . . , κs are their corresponding
multiplicities.

2) Represent each of the terms of the equation by the algebraic Dunkl operator Sk. This is
done by the formulae

Dj
ku = Sj

ku− Sj−1
k α0 − Sj−2

k α1 − · · · − Skαj−2 − αj−1, j = 1, 2, . . . ,m.

Thus we obtain the following equation in Mk:

P (Sk)u = f + Q(Sk), deg Q < deg P,

with

Q(Sk) =
m−1∑
j=0

m−j−1∑
l=0

ajαlS
m−j−l−1
k =

m−1∑
µ=0

(
m−µ−1∑

ν=0

aναm−µ−ν−1

)
Sµ

k .

3) Verify if P (Sk) is a non-divisor of zero inMk by checking if Ek(µj) 6= 0 for all j = 1, 2, . . . , s.
4) If P (Sk) is a non-divisor of zero, then write the solution u in Mk:

u =
1

P (Sk)
f +

Q(Sk)
P (Sk)

.

5) Expand 1
P (Sk) and Q(Sk)

P (Sk) into partial fractions:

1
P (Sk)

=
s∑

j=1

κj∑
l=1

Aj,l

(Sk − µj)l
,

Q(Sk)
P (Sk)

=
s∑

j=1

κj∑
l=1

Bj,l

(Sk − µj)l
.
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6) Interpret the partial fractions as convolution operators

1
Sk − µj

= {lk(µj , x)} ∗ =
1

Ek(µj)

{
jk− 1

2
(iµjx) +

µjx

2k + 1
jk+ 1

2
(iµjx)

}
∗ .

1
(Sk − µj)l

=

{
1

(l − 1)!
∂l−1

∂λl−1
lk(λ, x)

∣∣∣∣
λ=µj

}
∗ , l = 2, 3, . . . .

7) Write the convolutional representation

u(x) = (G ∗ f)(x) + R(x), where G =
1

P (Sk)
, R =

Q(Sk)
P (Sk)

.

Example 3. Let P (λ) has only simple zeros µ1, µ2, . . . , µm. Then

1
P (Sk)

=
m∑

j=1

1
P ′(µj)

· 1
Sk − µj

=


m∑

j=1

1
P ′(µj)

lk(µj , x)

 ∗
and

Q(Sk)
P (Sk)

=
m∑

j=1

Q(µj)
P ′(µj)

· 1
Sk − µj

=


m∑

j=1

Q(µj)
P ′(µj)

lk(µj , x)

 ∗ .

Then the solution u takes the functional form

u(x) =
m∑

j=1

1
P ′(µj)

lk(µj , x) ∗ f(x) +
m∑

j=1

Q(µj)
P ′(µj)

lk(µj , x).

The result of this section can be summarized in the following

Theorem 8. The nonlocal Cauchy problem (Definition 4) for a Dunkl equation P (Dk)u = f
has a unique solution in C(m)(R), m = deg P , iff none of the zeros of the polynomial P (λ) is
a zero of the indicatrix Ek(λ), i.e. when

{λ : P (λ) = 0} ∩ {λ : Ek(λ) = 0} = ∅.

Remark 3. The term “nonlocal” should not be understood literally. The assertion of Theorem 8
is true also when Φ is a Dirac functional, i.e. Φ{f} = f(a) for a ∈ R. For us the most interesting
is the case Φ{f} = f(0). Then Ek(λ) ≡ 1 and from the theorem it follows that the initial value
problem

P (Dk)u = f, u(0) = α0, (Dku)(0) = α1, . . . ,
(
Dn−1

k u
)
(0) = αn−1,

always has a unique solution. We will use this fact in the following section.

6 Mean-periodic functions for Dk determined by a linear
functional and mean periodic solutions of Dunkl equations

The notion of mean-periodic function for the differentiation operator d
dt , determined by a linear

functional Φ in C(R), is introduced by J. Delsarte [4]:
A function f ∈ C(R) is said to be mean-periodic with respect to the functional Φ if it satisfies

identically the condition

Φτ{f(t + τ)} = 0. (18)
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In order to define mean-periodic functions for the Dunkl operator Dk we need to recall the
definition of the Dunkl translation (shift) operators, introduced by M. Rösler [13] and later
studied in M.A. Mourou and K. Trimèche [11]. They are a class of operators M : C(R) → C(R)
commuting with Dk in C1(R).

Definition 5. Let f ∈ C(R) and y ∈ R. Then (T y
k f)(x) = u(x, y) ∈ C1(R2) is the solution of

the boundary value problem

Dk,xu(x, y) = Dk,yu(x, y), u(x, 0) = f(x).

T y
k is called the translation operator for the Dunkl operator Dk.

Such a solution exists for arbitrary f ∈ C(R) and it has the following explicit form (see
e.g. [13, 3]):

T y
k f(x) =

Γ
(
k + 1

2

)
Γ(k)Γ

(
1
2

) [∫ π

0
fe

(√
x2 + y2 − 2|xy| cos t

)
he(x, y, t) sin2k−1 t dt

+
∫ π

0
fo

(√
x2 + y2 − 2|xy| cos t

)
ho(x, y, t) sin2k−1 t dt

]
.

As usually, the subscripts “e” and “o” denote correspondingly the even and the odd part of
a function: fe(x) = f(x)+f(−x)

2 , fo(x) = f(x)−f(−x)
2 . As for he(x, y, t) and ho(x, y, t), they denote

respectively

he(x, y, t) = 1− sign(xy) cos t,

ho(x, y, t) =


(x + y)(1− sign(xy) cos t)√

x2 + y2 − 2|xy| cos t
for (x, y) 6= (0, 0),

0 otherwise.

Lemma 9. The translation operators satisfy the following basic relations:

(i) T y
k f(x) = T x

k f(y), (19)
(ii) T y

k T z
k f(x) = T z

k T y
k f(x), (20)

(iii) Dk,xT y
k f(x) = T y

k Dk,xf(x). (21)

Proofs can be found in various publications, in particular, in our paper [7].
A natural extension of the notion of mean-periodic function for the Dunkl operator is proposed

by Ben Salem and Kallel [3]. Instead of (18) they use the condition

Φy{T y
k f(x)} = 0 (22)

to define mean-periodic function f for Dk with respect to the functional Φ. Here T y
k is the

generalized translation operator just defined.
The space of mean-periodic functions for the Dunkl operator Dk with respect to a given func-

tional Φ will be denoted by PΦ. We skip the subscript k for sake of simplicity.

Lemma 10. If f ∈ PΦ, then Lkf ∈ PΦ.

Proof. Denote ϕ(x) = Φt{T t
kLkf(x)} and use the commutation relation (21) from Lemma 9

Dk,xT y
k f(x) = T y

k Dk,xf(x) to obtain

Dkϕ(x) = Φt{DkT
t
kLkf(x)} = Φt{T t

kDkLkf(x)} = Φt{T t
kf(x)} = 0.

Hence ϕ(x) = C = const. But ϕ(0) = Φt{T t
kLkf(0)} = Φt{T 0

k Lkf(t)} = Φt{Lkf(t)} = 0. Hence
C = 0. �
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Further we will be interested in the solvability of Dunkl differential-difference equations

P (Dk)u = f (23)

with a polynomial P in the space of the mean-periodic functions PΦ, defined by (22). We intend
also to propose an algorithm for obtaining such solutions.

To this end we are to develop an operational calculus for Dk in C(R) and to extend the
Heaviside algorithm for it. The following result plays a basic role in the application of this
algorithm for solution of Dunkl equations in mean-periodic functions.

Theorem 9. The class of mean-periodic functions PΦ is an ideal in the convolutional algebra
(C(R), ∗), i.e. if f ∈ PΦ and g ∈ C(R), then f ∗ g ∈ PΦ.

Proof. Assume that f ∈ PΦ, i.e.

Φt

{
T t

kf(x)
}

= 0.

From Lemma 10 it follows that Ln+1
k f ∈ PΦ for n = 0, 1, 2, . . . , i.e.

Φt

{
T t

kL
n+1
k f(x)

}
= 0.

Since Lkf = {1} ∗ f , then Ln+1
k f = Ak,n ∗ f , where the Dunkl–Appell polynomial Ak,n is of

degree exactly n. We have

Φt

{
T t

k(Ak,n ∗ f)(x)
}

= 0

and then we can assert that

Φt

{
T t

k(P ∗ f)(x)
}

= 0

for any polynomial P . By an approximation argument it follows that

Φt

{
T t

k(g ∗ f)(x)
}

= 0

for arbitrary g ∈ C(R), i.e. that g ∗ f ∈ PΦ. �

Corollary 3. Let M : C(R) → C(R) be an arbitrary multiplier of the algebra (C(R), ∗). Then
M(PΦ) ⊂ PΦ, i.e. the restriction of M to PΦ is an inner operator in PΦ.

Proof. Let f ∈ PΦ. According to Theorem 4, Mf = Dk(m ∗ f) with m = M{1}, then, by
Theorem 9, m ∗ f ∈ PΦ ∩ C1(R). Then Dk(m ∗ f) ∈ PΦ, i.e. f ∈ PΦ implies Mf ∈ PΦ. �

In the sequel we study the problem of solution of Dunkl equations in mean-periodic functions
determined by a linear functional.

Theorem 10. A function u ∈ PΦ ∩ C(m)(R) is a solution of the Dunkl equation P (Dk)u = f ,
with f ∈ PΦ iff u is a solution of the homogeneous nonlocal Cauchy problem

P (Dk)u = f, Φ{Dj
ku} = 0, j = 0, 1, 2, . . . ,m− 1, m = deg P.

Proof. The condition f ∈ PΦ is necessary for the existence of a solution u ∈ PΦ. Assume
that a function u ∈ PΦ ∩ C(m)(R) is a solution of the Dunkl equation P (Dk)u = f . Then
mean-periodic are all the functions Dj

ku, j = 0, 1, 2, . . . ,m− 1, i.e.

Φy

{
T y

k Dj
ku(x)

}
= 0, (24)
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since the operator Af(x) = Φy{T y
k f(x)} commutes with Dk (Dimovski, Hristov and Sifi [7]).

For x = 0 from (24) we get

Φy

{
T y

k Dj
ku(0)

}
= 0.

But T y
k Dj

ku(0) = T 0
k Dj

ku(y) ((19), Lemma 9) and hence

Φ
{
Dj

ku
}

= 0, j = 0, 1, 2, . . . ,m− 1. (25)

In order to prove that a solution u of P (Dk)u = f with f ∈ PΦ, which satisfies conditions (25),
is a mean-periodic function, we consider the function

v = Φy

{
T y

k u(x)
}

= Au.

Since the operator A commutes with Dk, then applying it on the equation P (Dk)u = f , we get
P (Dk)v = 0 due to Af = 0. It remains to find the initial values Dj

kv(0), j = 0, 1, 2, . . . ,m− 1:

Dj
kv(0) = ADj

ku(0) = Φy{T y
k Dj

ku(0)} = Φy{T 0
k Dj

ku(y)} = Φy{Dj
ku(y)} = 0.

At the end of the previous section we have seen that the initial value problem P (Dk)v = 0,
Dj

kv(0) = 0, j = 0, 1, 2, . . . ,m − 1, has only the trivial solution v(x) = 0. Thus we proved that
Φy{T y

k u} = 0, i.e. u is mean-periodic. �

Now we can use operational calculus method for solving nonlocal Cauchy problems for Dunkl
equations to find explicitly the mean-periodic solutions of such equations.

To this end, we are to solve the homogeneous nonlocal Cauchy boundary value problem

P (Dk)u = f, Φ
{
Dj

ku
}

= 0, j = 0, 1, 2, . . . ,m− 1, (26)

with f ∈ PΦ.
In the ring Mk of the multiplier fractions it reduces to the single algebraic equation for u

P (Sk)u = f. (27)

As we have seen in Section 4, P (Sk) is a non-divisor of zero in Mk iff none of the zeros of the
polynomial P (λ) is a zero of the Dunkl indicatrix Ek(λ). If P (Sk) is a divisor of zero, then, in
order to ensure the existence of solution of (27) and thus of (26), additional restrictions on f
should be imposed. This is the so called resonance case, which we will not treat here.

Thus, let P (Sk) be a non-divisor of zero in Mk, i.e. {λ : P (λ) = 0} ∩ {λ : Ek(λ) = 0} = ∅.
Then the formal solution of (27) in Mk

u =
1

P (Sk)
f

can be written in explicit functional form. Using the extended Heaviside algorithm of Section 5,
we represent 1

P (Sk) as a convolutional operator

1
P (Sk)

= {G(x)} ∗ .

Then

u = G ∗ f

is the desired mean-periodic solution of the Dunkl equation P (Dk)u = f . The verification is
straightforward. Indeed, G ∗ f ∈ PΦ according to Theorem 9, since f ∈ PΦ.

Our considerations of the problem for solving Dunkl equations in mean-periodic functions
can be summarized in the following
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Theorem 11. A Dunkl equation P (Dk)u = f with f ∈ PΦ has a unique solution in PΦ iff none
of the zeros of the polynomial P (λ) is a zero of the Dunkl indicatrix

Ek(λ) = Φ
{

jk− 1
2
(iλx) +

λx

2k + 1
jk+ 1

2
(iλx)

}
.

In the end, it is possible the Duhamel principle to be extended to the problem for solving
Dunkl equations in mean-periodic functions.

Theorem 12. Let H(x) be the solution of the homogeneous nonlocal Cauchy problem P (Dk)H=1,
Φ{Dj

kH} = 0, j = 0, 1, 2, . . . ,m− 1. Then

u = Dk(H ∗ f)

is a mean-periodic solution of the Dunkl equation P (Dk)u = f with f ∈ PΦ.
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