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Abstract. We consider the XXX homogeneous Gaudin system with N sites, both in classical
and the quantum case. In particular we show that a suitable limiting procedure for letting
the poles of its Lax matrix collide can be used to define new families of Liouville integrals
(in the classical case) and new “Gaudin” algebras (in the quantum case). We will especially
treat the case of total collisions, that gives rise to (a generalization of) the so called Bending
flows of Kapovich and Millson. Some aspects of multi-Poisson geometry will be addressed
(in the classical case). We will make use of properties of “Manin matrices” to provide explicit
generators of the Gaudin Algebras in the quantum case.
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1 Introduction

The Gaudin model [21] was introduced by M. Gaudin as a spin model related to the Lie algeb-
ra sl2, and later generalised to the case of an arbitrary semisimple Lie algebra g.

The Hamiltonian is

HG =
dim g∑
a=1

∑
i6=j

x(i)
a xa(j),

where {xa}, a = 1, . . . ,dim g, is an orthonormal basis of g with respect to the Killing form
(and xa its dual). These objects are regarded as elements of the polynomial algebra S(g∗)⊗N in
the classical case, and as elements of the universal enveloping algebra U(g)⊗N in the quantum
case, as

x(i)
a = 1⊗ · · · ⊗ xa︸︷︷︸

i-th factor

⊗ 1 · · · ⊗ 1.

Gaudin himself found that the quadratic Hamiltonians

Hi =
∑
k 6=i

dim g∑
a=1

x
(i)
a xa(k)

zi − zk
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provide a set of quantities that commute with HG, for any choice of pairwise distinct points
z1, . . . , zN in the complex plane. The corresponding classical quantities are “constants of the
motion” for the Hamiltonian flow generated by HG. For instance, in the sl2 case, we have

HG =
N∑

i,j=1, i 6=j

h(i)h(j) + e(i)f (j) + f (i)e(j),

Hi =
N∑

k=1,k 6=i

h(i)h(k) + e(i)f (k) + f (i)e(k)

zi − zk
, i = 1, . . . , N.

Later it was shown (see, e.g., [23]) that – in the classical case – for a general (semisimple)
Lie algebra g the spectral invariants of the Lax matrix

LG(z) =
∑
i,a

x
(i)
a ⊗ xa(i)

z − zi
(1.1)

encode a (basically complete) set of invariant quantities. We recall that under the name spectral
invariants of LG we mean the quantities

Res
z=zi

(z − zi)kαΦα(LG), i = 1, . . . , N,

where Φα is a complete set of Ad-invariant quantities for g, and the exponents kα run in an
appropriate set. For instance, for g = gl(r), which is the case we will basically consider, we can
choose Φα(LG(z)) to be Tr (LG(z)α) (or, equivalently, the coefficients pα of the characteristic
polynomial of LG(z)), with α = 1, 2, . . . , r; in this case, kα will run from 0 to α− 1.

The meaning of “basically” complete refers to the fact that, e.g., the residues of the trace
of L2

G(z) at the different points zi, i = 1, . . . , N are not independent, since LG(z) is regular at
infinity. Actually, the spectral invariants of LG(z) generate the Poisson-commutative subalgebra
of maximal possible transcendence degree in the algebra of diagonal invariants S(g∗⊕· · ·⊕g∗)g.
To obtain a maximal Poisson-commutative subalgebra in S(g∗ ⊕ · · · ⊕ g∗), one has to add
1
2(dim gln + rank gln) independent Hamiltonians (the Mischenko–Fomenko generators for the
diagonal g). This is due to the fact that, being the models we are considering homogeneous,
they are invariant with respect to the diagonal adjoint action of the group G. We will later refer
to this fact as the global G invariance of the models. The enlarged set herewith defined gives to
the (classical) Gaudin system the structure of a Liouville integrable system. For instance, in the
case g = sl2, one has to complement the residues of the trace of L2

G at its singular points zi with

a further quantity, e.g. a component of the total “spin”, say Sz =
N∑

i=1
h(i). It should however be

noticed that the number of integrals to be added to the spectral invariants equals, independently
of the number N of “Gaudin generalized magnets”, the rank of g. So, with a slight abuse of
language, we will sometimes speak of a complete set of integrals referring only to the spectral
invariants.

The quantum case was the subject of intense investigations. It is outside of the size of
this paper to historically frame such a research line. For our purposes, it is of paramount
relevance the fact that, in [18], Feigin, Frenkel and Reshetikhin proved the existence of a large
commutative subalgebra A(z1, . . . , zN ) ⊂ U(g)⊗N containing the quadratic elements Hi (see,
also, [10, 17, 19, 20, 30, 31]). For g = sl2, the algebra A(z1, . . . , zN ) is generated by the Hi, the
additional global element Sz and the central elements of U(g)⊗N .

In the other cases, the algebra A(z1, . . . , zN ) has also some new generators known as higher
Gaudin Hamiltonians. Their explicit construction for g = gl(r) was obtained by D. Talalaev [34]
and further discussed in papers by A. Chervov and D. Talalaev [7, 8].
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In the present paper we will discuss the problem of considering – both from the classical and
from the quantum point of view – what happens when the arbitrary points z1, . . . , zN appearing
in the Lax matrix, and in the quadratic Hamiltonians Hi glue together; in particular, we will
pay special attention to the “extreme” case, when in some sense all points collide; indeed, this
extreme case gives rise to (the generalisation of) a remarkable integrable system, called the
“bending flows” systems introduced and studied – for the case g = so(3) – by Kapovich and
Millson [24] in their work concerning moduli spaces of polygons in R3.

2 The classical case

In the classical case, to shorten notations, it is customary to write the Lax matrix LG(z) (1.1)

as LG(z) =
N∑

i=1

Xi
z−zi

. It satisfies the Poisson algebra

{LG(z)⊗ 1, 1⊗ LG(u)} =
[

Π
z − u

, LG(z)⊗ 1 + 1⊗ LG(u)
]

,

where Π is the permutation matrix Π(X ⊗ Y ) = Y ⊗X.
As it is well known, this linear r-matrix structure (together with suitable reductions) is

associated with a huge number of classical integrable systems, such as Neumann type systems
and the n-dimensional Manakov tops, finite gap reductions of the KdV equations, as well finite
gap reductions of its generalisations to arbitrary simple Lie algebras known as Gel’fand–Dickey
hierarchies, Hitchin’s system on singular rational curves and so on and so forth (see, e.g., [29, 1]
and the references quoted therein).

Also, it is well known that the r-matrix Poisson brackets presented above can be seen as
a kind of “shorthand notation” for the following situation:

• The phase space1 of the N -site classical Gaudin model is g∗⊗N .

• The “physical” Hamiltonian is a mean field spin-spin interaction,

HG =
1
2

N∑
i6=j=1

Tr (Xi ·Xj), Xj ∈ g∗(' g).

• The Poisson brackets defined by the r-matrix formula are just product of Lie–Poisson
brackets on g∗⊗N .

• The definition of the (classical) Lax matrix as LG(z) =
N∑

i=1

Xi
z−zi

defines an embedding of

our phase space g⊗N into a Loop space Lg ' g((z)).

We now turn to the discussion of limits of the above situation when some of the points z1, . . . , zN

collide (or glue together) in a suitable sense. We shall discuss both algebraic aspects (that is,
the corresponding Lax matrices) and address also some Poisson aspects.

2.1 Lax matrices and their limits

To consider limits of the Gaudin algebras when some of the points z1, . . . , zN glue together, we
can proceed as follows. We keep some (say the first k) points z1, . . . , zk “fixed”, and let the
remaining N − k points glue to a new point w, via

zk+i = w + s ui, i = 1, . . . , N − k, zi 6= zj , ui 6= uj , s → 0. (2.1)

We can represent this procedure as in Fig. 1.
1In this paper we will always deal with metric (or reductive) Lie algebras (and, in particular, with gl(r)), so

that we will tacitly henceforth identify g with g∗.



4 A. Chervov, G. Falqui and L. Rybnikov

z z z zz

w

2 3 4

z1 z2

1 5

Figure 1. A gluing pattern π.

To see what happens in this limit we first observe, that obviously

LG(z) → L2(z) =
k∑

i=1

Xi

z − zi
+

N∑
i=k+1

Xi

z − w
, s → 0. (2.2)

Considering only this limit would however be too näıve, and indeed, we see that (even in the
case of g = gl(2)) the number of Hamiltonians obtained from the spectral invariants of (2.2) is
not sufficient to yield complete integrability.

One can notice that, in the gluing procedure, some residues of the Lax matrix should also be
taken into account. That this is the case can be seen by a proper rescaling argument as follows.

Let us introduce a new variable z̃ = (z − w)/s, so that z = w + sz̃, and rewrite the Lax
matrix in terms of the new variable as

LG(z) =
k∑

i=1

Xi

w + sz̃ − zi
+

N∑
i=k+1

Xi

w + sz̃ − w − sui
.

Multiplying this by s we can see that another Lax matrix appears for s → 0, that is,

sLG(z̃) = s

(
k∑

i=1

Xi

w + sz̃ − zi
+

N∑
i=k+1

Xi

s(z̃ − ui)

)
→

N∑
i=k+1

Xi

z̃ − ui
= L1(z̃), s → 0.

The justification of this rescaling and limit is simple. Indeed, for s 6= 0, the ring of Hamiltonians
obtained from sLG(z̃) coincides with that obtained from LG(z). Thus the Hamiltonians obtained
from the limiting Lax matrix L1(z̃) are limits of the corresponding Hamiltonians of the Gaudin
model.

Finally we conclude that starting from the Lax matrix with generic (distinct) points z1, . . ., zN ,
we can associated, to the gluing of (2.1) the following pair of “Lax matrices”:

L1(z) =
N∑

i=k+1

Xi

z − ui
and L2(z) =

k∑
i=1

Xi

z − zi
+

N∑
i=k+1

Xi

z − w
. (2.3)

Notice that, in the general case, we can choose the gluing procedure to be explicitly given by,
e.g.,

zk+i = w + s(zk+i − w), s ∈ (0, 1)

and, using invariance w.r.t. transformation of the spectral parameter z → z − w, trade the

matrix L1 of (2.3) for L̃1(z) =
N∑

i=k+1

Xi
z−zi

.
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In particular, in the example of the Fig. 1, we would associate, to the “generic” Lax matrix

LG(z) =
5∑

i=1

Xi
z−zi

the two matrices

L1(z) =
X3

z − z3
+

X4

z − z4
+

X5

z − z5
, and L2(z) =

X1

z − z1
+

X2

z − z2
+

X3+ X4+ X5

z − w
.

Proposition 1. For every choice of w ∈ C the family of spectral invariants H(1), H(2) associated
with the Lax matrices L1 and L2 satisfy the following properties:

1. The elements of H(1), H(2) commute w.r.t. the standard (diagonal) Poisson brackets on gN .

2. The dimension of the Poisson commutative subalgebra H1,2,w generated by the spectral
invariants H(1) and H(2) which are those, respectively, associated with the Lax matri-
ces L1(z) and L2(z), coincides with that of the spectral invariants associated with the
generic Lax matrix.

3. The physical Hamiltonian HG lies in H1,2,w.

Proof. The commutativity property (the first assertion) holds thanks to the following facts.
First, it is clear that if h1, h2 are taken either both from the subfamily H(1) or the subfamily H(2)

the assertion is trivially true. Let us suppose thus that h1 ∈ H(1) and h2 ∈ H(2). The fact that
{h1, h2} = 0 follows from the fact that h2 depends on X1, X2, . . . , Xk only through the sum

Xk =
k∑

i=1
Xi, and h1 is invariant under the diagonal action of g.

The second assertion holds thanks to the results of Jurčo briefly mentioned before about the
number of functionally independent spectral invariants of a Lax matrix of Gaudin type, as well
as to the functional dependence of L2(w) on the “variables” X1, . . . , Xk.

The third one can be checked by induction. �

Remarks. 1) The meaning of this proposition is that, once the global G-invariance has been
taken into account, the procedure of glueing discussed above provides new families of Liouville
integrals for the “physical” Gaudin Hamiltonian HG.

2) It is fair to say that a procedure somewhat similar to this was presented by the late
V. Kuznetsov in [25]. However, possibly owing to the fact that the author restricted himself to
the case of rank 1 (namely, mostly to the case g = so(2, 1)), he did not consider the need to add
the further singular point w. This is crucial to obtain, in the general case, the correct number
of Liouville integrals for the “new” system.

3) Our glueing procedure differs substantially from the one considered in [27] (see also [2]),
where the limiting procedure produces higher order poles in the Lax matrix, and is associated
with non-semisimple Lie–Poisson algebras, that are Inönü–Wigner contractions of the original
one (see, for our case, Section 2.2).

2.2 On the Poisson geometry of the limiting procedure

The interplay between classical Lax matrices, Loop algebras and Poisson manifolds is nowadays
well known, and was settled mainly in the works of the Leningrad’s school (see, e.g. the review
by Reyman and Semenov-Tyan-Shanski in [29]). It is encoded in the notion of R-operator as
follows.

On the space g∗((z)) of Laurent polynomials with values in (the dual of) a Lie algebra g,
there is a family of mutually compatible Poisson brackets, {·, ·}k associated with a family of
classical R-operators

Rk(X(z)) =
(
zkX(z)

)
+
−
(
zkX(z)

)
−
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via the formula

{F,G}k(X) = 〈X, [Rk(∇(F )),∇(G)]〉 − 〈X, [Rk(∇(G)),∇(F )]〉.

Spectral invariants of a Lax matrix (say, polynomially dependent on the spectral parameter z)
form an Abelian Poisson subalgebra w.r.t. any of the brackets {·, ·}k.

Let us consider the space of N -th order polynomials g∗N = g∗[[z]] mod zN+1. It can be shown
that (see, e.g., [29, 28])

• The brackets associated with R0, . . . , RN on g∗((z)) restrict to the affine subspace

g∗N,A :=

{
X ∈ g∗((z)) |X(z) = zN+1A +

N∑
i=0

ziXi

}
,

where A is a fixed element of g, and thus on g∗N = g∗N,0, that is when A = 0 which is the
case we plan to consider in this paper.

• These brackets are mutually compatible and give rise to multi-Hamiltonian structures on
the finite dimensional manifolds g∗N,A. A straightforward observation [12] is the following:

we can associate with any polynomial of degree N Q(z) =
N∑

i=0
κiz

N−i a Poisson bracket

(of the RSTS family) via:

{·, ·}Q =
N∑

i=0

κi{·, ·}i.

In this setting, we can recover the standard (product) Lie–Poisson structure on g⊗N as follows.

Considering the “Lax map” LG =
N∑

i=1

Xi
z−zi

the diagonal structure can be obtained, in the RSTS

framework, by the sum

{·, ·}S = {·, ·}N +
N−1∑
i=0

(−1)iσi{·, ·}i,

the σi being the elementary symmetric polynomials in the quantities z1, . . . , zN . That is, the
standard r-matrix Poisson bracket can be regarded as the one associated with the polynomial

S(z) =
N∏

i=1

(z − zi) = zN +
N−1∑
i=0

(−1)iσiz
N−1.

As a side remark, one can also notice that this gives the possibility of constructing a bi-
Hamiltonian structure for the classical Gaudin case. Indeed the structure defined by the poly-
nomial

(
S(z)

z

)
+

provides, together with the standard one, a bi-Hamiltonian structure for the

Gaudin model, such that the spectral invariants of LG(z) fill in recursion relations of (genera-
lized) Lenard–Magri type. More in detail, suitable combinations thereof give rise to anchored
Lenard–Magri sequences, in the terminology of Gel’fand–Zakharevich [22].

What is more important for the present paper is that this picture suggests and gives the
opportunity of studying, from this point of view, the limits of (suitable combinations of) the
RSTS Poisson structures when some (and, iteratively, possibly all) poles of the Lax matrix
z1, . . . , zN glue together.
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This means the following: if we pull back, via the map

LG → LG,pol, LG,pol =
N∏

i=1

(z − zi)

(
N∑

i=1

Xi

z − zi

)

the RSTS Poisson brackets {·, ·}k, k = 0, . . . , N , we obtain families of linear Poisson brackets
on g∗N = g∗[[z]] mod zN+1 that depend rationally on (z1, . . . , zN ).

In this framework, a natural question arises, that is, whether one can associate suitable
Poisson structures to the procedure of gluing (some of the) points zi discussed – in the Lax
setting – in Section 2.1. In the example of the limit pattern depicted in Fig. 1, one of the
possible Poisson structures2 that can be obtained is represented by the operator (for the sake of
simplicity, we set w = z3, g = gl(r))

P =



0 z23[X1, ·] 0 0 0

z23[X1, ·] [P22, ·] −z12[X3, ·] −z12[X4, ·] −z12[X5, ·]

0 −z12[X3, ·] 0 −z13z34

z45
[X3, ·]

z13z35

z45
[X3, ·]

0 −z12[X4, ·] −z13z34

z45
[X3, ·] [P44, ·] [P45, ·]

0 −z12[X5, ·]
z13z35

z45
[X3, ·] [P45, ·] [P55, ·]


, (2.4)

where zij = zi − zj , and

P22 = z23 (X2 −X1) + z12 (X3 + X4 + X5) ,

P44 =
z13z34

z45

(
X3 −

z35 − z45

z45
X4 −

z13z34

z45
X5

)
,

P45 =
z13

z2
45

(
z2
35X4 + z2

34X5

)
,

P55 = −z13z35

z45

(
X3 +

z35

z45
X4 +

z34 − z45

z45
X5

)
.

Using the fact that both tangent vectors and one-forms on the phase space of this five-site model
can be identified with five-tuples of matrices the meaning of the representation (2.4) (see also
the subsequent equations (2.5), (2.6) can be illustrated as follows.

The Hamiltonian vector field associated via P to the one-form (α1, . . . , α5) is given by Ẋi =
5∑

j=1
[Pij , αj ]. E.g., Ẋ1 = z23[X1, α2], and so on and so forth.

It is not difficult to check that the spectral invariants of the matrices

L1 =
X3

z − z3
+

X4

z − z4
+

X5

z − z4
, and L2 =

X1

z − z1
+

X2

z − z2
+

X1 + X2 + X3

z − z3
.

do commute with respect to the Poisson brackets P defined by (2.4) (besides, as proven in
Proposition 1, commuting w.r.t. the standard Poisson brackets).

Conjecture. For every limit pattern π described in Section 2.1 there are suitable linear combina-
tions {·, ·}π of the Poisson brackets above that remain regular. Endowing the phase space g∗⊗N

with these limiting brackets, one obtains bi-Hamitonian (or, possibly, multi-Hamiltonian) mani-
folds. The integrable systems defined, (according to the Gel’fand–Zakharevich scheme) by these

2There is two-parameter family of such structures.
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multi-Hamiltonian structures admit Lax representations, whose Lax matrices are exactly those
constructed in Section 2.1. In other words,the spectral invariants of the Lax matrices associated
with the limiting pattern π patterns provide, w.r.t. the Poisson pencil formed out of the diagonal
bracket and the bracket {·, ·}π Lenard–Magri sequences (possibly in a generalised sense). Also,
the brackets {·, ·}π are semisimple Lie–Poisson brackets.

This conjecture has not been fully proven yet, but we have checked it in a significant number
of examples. We notice that, in the “extreme gluing case”, that is, when all zi glue according
to the pattern z2 → z1, z3 → z1 (= z2), z4 → z1 (= z2 = z3), . . . we can obtain the following
“limit” bracket which is independent of any parameter:

{F,G}limit =
∑
i,j,k

rijkTr (∇Fi [Xk,∇Gj ]) with

rijk = (k − 1)δijδjk − θ(i−k)δij + θ(j−i)δik + θ(i−j)δjk,

where ∇Fi, (resp. ∇Gi) represents the differential of F (resp. G) w.r.t. the i-th entry Xi.
As it has been shown in [13] these Poisson brackets are still compatible with the standard

r-matrix ones.
To elucidate the formula above, we notice that, in the 4-site case we have the following

representation – by Poisson operators – of the brackets as follows:

Pstandard r =


[X1, ·]

[X2, ·]
[X3, ·]

[X4, ·]

 , (2.5)

Plimit =


0 [X1, · ] [X1, · ] [X1· ]

[X1, · ] [X2 −X1, · ] [X2, · ] [X2, · ]
[X1, · ] [X2, · ] [2X3 −X2 −X1, · ] [X3, · ]

[X1, · ] [X2, · ] [X3, · ]
[
3X4 −

3∑
i=1

Xi, ·
]
 . (2.6)

According to the Gel’fand–Zakharevich (or Lenard–Magri) scheme, Pstandard r and Plimit define
the gl(r) (as well as g) – valued generalisation of the so called Bending flows, introduced in the
case corresponding to g = gl(2) by Kapovich and Millson [24], and further discussed in [16].

2.3 The Bending system

Bending flows are defined on the moduli space Mr of (N)-gons with fixed sides lengths r =
(r1, . . . , rN ), ri > 0. In [24] it was shown, among other properties, that:

• Mr is a smooth (2N − 6)-dimensional open manifold, whose compactification is achieved
when some of the side lengths vanish.

• Mr is endowed with a natural symplectic structure, since it is a symplectic quotient of
products of spheres:{

(e1, e2, . . . , eN ) ∈ S2
r1
× S2

r2
× · · · × S2

rN

}
//SO(3),

where the symbol // denotes the symplectic quotient on the null manifold of the moment
map defined by the diagonal SO(3) action on the spheres Sri .

On this moduli space of polygons a completely integrable Hamiltonian system can be defined,
indeed called the Bending system or system of bending flows.
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Figure 2. Polygon in R3.
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Figure 3. The Bending flows for polygons ((so(3))-case).

The action variables for such system are the lengths of diagonals stemming from one vertex,
and the angle variables are (indeed) the dihedral angles (see Figs. 2 and 3). Geometrically, the
flows bend one part of the polygon around the corresponding diagonal, keeping the rest fixed,
whence the denomination.

In the papers [11, 13] the following picture was established: g-Bending flows can be defined
on the same phase space of the g-Gaudin system, the link between the two (in the Kapovich
Millson N -gon case) being the fact that S2

r is a symplectic leaf of so(3)N , and the condition for
the polygon to close is just the choice of the special value µ = 0 of the image of the momentum
map. Also, the following results were established:

• g-Bending flows admit a set of N − 1 Lax matrices of the form

Lk(z) = zXk +
N∑

i=k+1

Xi, k = 1, . . . , N − 1. (2.7)

• Hamiltonians come in “clusters”, each cluster being associated with the corresponding Lax
matrix. For g = gl(r)

Ha
k,m = res

z=0

1
za+1

TrLm
k (z). (2.8)

• Separation of variables can be performed in this scheme. Separation canonical conju-
gated variables come in “clusters”, associated, via the bi-Hamiltonian version [15] of the
Sklyanin magic recipe [33], to each of the Lax matrices. Actually, it has also been shown
that integration of the Hamilton–Jacobi equation involves Abelian differentials of order
independent of the number of sites. Moreover, for g = sl(r) the genus of the underlying
Riemann surface can be computed to be g = r(r−1)

2 .

For further use, we remark that the ring of spectral invariants of a Lax matrix is, as it is well
known, invariant w.r.t. rational changes in the spectral parameter and/or multiplication by
a rational function of the spectral parameter. Thus, instead of the Hamiltonians (2.8) asso-
ciated with the “parameter free” Lax matrices (2.7), we can consider, as an equivalent set of
Hamiltonians for the generalised gl(r) bending flows, the spectral invariants associated with the
matrices

L1 =
X2

z − z2
+

X1

z − z1
, L2 =

X3

z − z2
+

X1 + X2

z − z1
, . . . ,
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Figure 4. Triangulations and trees.

LN−1 =
XN

z − z2
+

N−1∑
i=1

Xi

z − z1
, (2.9)

rationally dependent on z. We finally want to add the following observation. As it is pictorially
suggested in Fig. 4, there is a natural interpretation of our procedure in terms of triangulations
of a polygon and graphs.

Actually, we have already seen (see Fig. 1) that we can interpret our procedure of glueing
points in terms of building up tree-graphs out of the set of singular points of the generic Lax
matrix of the Gaudin model. In particular, the glueing pattern depicted on the right of Fig. 4
corresponds to the limit in which we produce the “Bending” integrals, and, in the topological
point of view, exactly gives (provided we identify the point z1 with the root), the dual graph to
the triangulation of the right hand side of the picture.

It is outside of the size of the paper to fully discuss these issues, which however the authors
think being of a certain interest. It should also be noticed3 that tree diagrams corresponding to
the glueing patterns described in this paper appear in the theory of moduli of pointed rational
curves.

3 The quantum case

3.1 FFR Gaudin algebras and their limits

The existence of a large quantum commutative subalgebra A(z1, . . . , zN ) ⊂ U(g)⊗N containing
the Gaudin Hamiltonians Hi was shown in [18]. As we recalled in the introduction, whenever g

has rank greater than one, A(z1, . . . , zN ) has new generators, besides the quadratic ones, known
as higher Gaudin Hamiltonians.

Roughly speaking, the definition of A(z1, . . . , zN ) can be obtained identifying a commu-
tative subalgebra of the enveloping algebra U(g ⊗ t−1C[t−1]) as follows. To any collection
z1, . . . , zn of pairwise distinct complex numbers, one can naturally assign the evaluation map
U(g ⊗ t−1C[t−1]) → U(g)⊗N . The image of the commutative subalgebra in U(t−1g[t−1]) under
the composition of the above homomorphisms, denoted by A(z1, . . . , zn), is called (quantum)
Gaudin algebra.

It is useful to recall the following well known facts from the theory of Lie algebras. Let g be
a Lie algebra. The universal enveloping algebra U(g) bears a natural filtration by the degree
with respect to the generators. The associated graded algebra is the symmetric algebra S(g) by
the Poincaré–Birkhoff–Witt theorem. To every element ξ in U(g) there corresponds uniquely its

3We thank G. Felder for an observation concerning this point.
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image ξ̄ in S(g), since S(g) corresponds to the graded algebra associated with U(g). This element
is customarily called, in the theory of Gaudin and Heisenberg spin systems/chains, the “classical
limit” of ξ. Also, whenever g is reductive, S(g) ' S(g∗), and U(g⊕ g · · · ⊕ g︸ ︷︷ ︸

N times

) =
(
U(g)⊗

N )
.

The problem of finding explicit representatives for generators of A(z1, . . . , zN ) in the case
g = gl(r) was concretely solved by Talalaev some ten years later after the paper by Feigin,
Frenkel and Reshetikhin [18], by means of the following construction.

Theorem 1 (Talalaev, 2004). Let L(z) be the Lax matrix of the gl(r)-Gaudin model, that is,
let L(z) satisfy the r-matrix commutation relations

[L(z)⊗ 1, 1⊗ L(u)] =
[

Π
z − u

, L(z)⊗ 1 + 1⊗ L(u)
]

. (3.1)

Consider the differential operator in the variable z “DET”
(
∂z−L(z)

)
=

∑
i=0,...,r

QHi(z)∂i
z; Then:

∀ i, j ∈ 0, . . . , r, and u, v ∈ C, [QHi(z)|z=u, QHj(z)|z=v] = 0.

The QHi(z)’s generators of (a full set of) quantum mutually commuting quantities. We shall
discuss the meaning of the symbol “DET” appearing in the formulation of Talalaev’s theorem
in Section 3.2, where we shall also comment on its proof.

For the moment, let us remark that the Gaudin algebra(s) defined by Feigin, Frenkel and
Reshetikhin – and concretely identified by Talalaev’s formula for N -spin glr Gaudin systems –
explicitly depends, in general (that is when N ≥ 3) on the points z1, . . . , zN . In another parlance,
its has moduli. However it holds (see [4] for the proof) the following

Proposition 2. A(z1, . . . , zN ) is invariant under permutations and under simultaneous resca-
lings zi → αzi + β, α, β ∈ C; thus the “two site” algebra A(z1, z2) is independent of z1, z2.

Let us now consider limits of the quantum Gaudin algebras when some of the points z1, . . . , zN

glue together according to some pattern. Here, obviously enough, we will follow the same glueing
procedure as in Section 2.

We recall that the basic procedure is that we keep some (say the first k) points z1, . . . , zk

“fixed”, and let the remaining N − k points glue to a new point w, via

zk+i = w + sui, i = 1, . . . , N − k, zi 6= zj , ui 6= uj , s → 0.

To describe this limit in the quantum case, it is useful to introduce the maps

Dk,N := id⊗k ⊗ diagN−k : U(g)⊗(k+1) ↪→ U(g)⊗N ,

defined by

Dk,N (X1 ⊗ · · · ⊗Xk ⊗Xk+1) = X1 ⊗ · · ·Xk ⊗Xk+1 ⊗ · · · ⊗Xk+1︸ ︷︷ ︸
N−k times

and

Ik,N := 1⊗k ⊗ id⊗(N−k) : U(g)⊗(N−k) ↪→ U(g)⊗N ,

defined by

Ik,N (X1 ⊗ · · ·XN−k) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k times

⊗X1 ⊗ · · · ⊗XN−k.

Furthermore, let us define the algebra

A(z1,...,zk,w),(u1,...,uN−k) := Dk,N (A(z1, . . . , zk, w)) · Ik,N (A(u1, . . . , uN−k))

In [4] it is proven the following
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Theorem 2. The algebra A(z1,...,zk,w),(u1,...,uN−k) is commutative;

lim
s→0

A(z1, . . . , zk, w + su1, . . . , z + s uN−k) = A(z1,...,zk,z),(u1,...,uN−k).

Remarks. 1) In some sense we arrive at a kind of factorisation of the limit algebra by “adding”
one point. Indeed, the commutative algebra A(z1,...,zk,w),(u1,...,uN−k) involves the FFR algebra as-
sociated with the points (z1, . . . , zk, w), and a FFR algebra related with the points u1, . . . , uN−k.
Iterating this limiting procedure described above we can obtain some new commutative subal-
gebras in U(g)⊗N , just like in the classical case we found Poisson commutative subalgebras
of S(g)⊗

N
.

2) In the case g = gl(r) the classical limits (in the sense specified above) of, respectively,
Ik,N (A(u1, . . . , uN−k)) and Dk,N (A(z1, . . . , zk, w)) coincide with the ring of the spectral invari-
ants of the matrices

L1 =
N∑

i=k+1

Xi

z − ui
, and L2(w) =

k∑
i=1

X1

z − zi
+

N∑
m=k+1

Xm

z − w

already discussed in Section 2.
In particular, as in the bending flow case, we can iterate the procedure to pass from A(z1, z2,

. . . , zN ) to A(z1,z2,...,zN−2,w) (zN−1,zN ), and finally obtain the subalgebra

Alim ≡ A(z1,z2),...,(z1,z2) ⊂ U(g)⊗n. (3.2)

In the process, we have to use translation invariance of A(z1, . . . , zM ), as well as the property
that the two site Gaudin algebra A(u, v) is independent of (u, v).

The limit algebra (3.2) is generated by

D1,N (A(z1, z2)), 1⊗D1,N−1(A(z1, z2)), . . . , 1⊗(N−2) ⊗A(z1, z2).

More explicitly:

Proposition 3. The subalgebra Alim is generated by elements H
(α)
l,k ∈ U(gl(r))⊗n such that their

classical “limits” H
(α)
l,k , are given by

H
(α)
l,k (X1, . . . , Xn) := Res

z=0

1
zα+1

Tr

(
Xk + z

n∑
i=k+1

Xi

)l

,

In other words, the classical limits of the (still unspecified) “quantum Bending Hamiltonians”

do coincide with the spectral invariants of the Lax matrices Lk(z) = zXk+
N∑

i=k+1

Xi, i = 2, . . . , N ,

associated with the bending flows. In turn, these can be traded for the spectral invariants of
their “rational” analogs

L1(z) =
XN−1

z − z2
+

XN

z − z1
, L2(z) =

XN−2

z − z2
+

XN + XN−1

z − z1
, . . . ,

LN−1 =
X1

z − z2
+

N∑
i=2

Xi

z − z1
. (3.3)

In the last part of the paper we shall show how, using Talalaev’s results briefly reminded
before as well as some of the results of [3] we can find a suitable quantization of the traces
of the powers of the Lax matrices (3.3) (as well as of, more generally, of the quantum Lax
matrices L1(z), L2(z) associated with an elementary “gluing” procedure.

To this end, we need to introduce the notion of Manin matrix.
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3.2 Manin matrices and the quantization of traces of Lax matrices

We consider the (differential operator valued) matrix considered in Talalaev’s Theorem 1, that
is, M(z) = ∂z −L(z). The standard linear r-matrix commutation relations (3.1) imply that the
matrix elements of M satisfy special commutation relations. These are the defining commuta-
tion relations of a class of matrices (with non-commutative entries) called in [3] Manin matrices.
The terminology originates from a seminal paper of Yu.I. Manin on quantum groups [26].

Manin matrices are, in a suitable sense, matrices associated with linear maps between com-
mutative rings. Their (more operative) definition can be given as follows:

Definition 1. Let Mij be a matrix with elements in a non commutative (unital) ring R; we
call it a (column) Manin matrix if:

• elements in the same column commute among themselves;

• commutators of the cross terms in any 2× 2 submatrix are equal:

[Mij ,Mkl] = [Mkj ,Mil], e.g. [M11,M22] = [M21,M12] and so on and so forth.

Manin matrices admit a natural definition of determinant. Indeed, if M is any matrix, one
can in principle define “a” determinant of M by column expansion:

det M = detcol M =
∑
σ∈Sn

(−1)σ
y∏

i=1,...,n

Mσ(i),i,

where Sn is the group of permutations of n letters, and the symbol y means that in the product∏
i=1,...,n

Mσ(i),i one writes at first the elements from the first column, then from the second column

and so on and so forth.
In the case of Manin matrices the characteristic property of total antisymmetry of the deter-

minant is preserved:

Proposition 4. The column determinant of a Manin matrix does not depend on the order of
the columns in the column expansion, i.e.,

∀ p ∈ Sn detcol M =
∑
σ∈Sn

(−1)σ
y∏

i=1,...,n

Mσ(p(i)),p(i).

In particular, a good notion of “DET” in the formulation of Talalaev’s quantum integrals of
the motion is given by the column determinant of M(z).

Among the properties of “ordinary” linear algebra that Manin matrices satisfy, we mention
the following:

• The inverse of a Manin matrix M , whenever it exists, is still a Manin matrix.

• The (left) Cramer formula holds:

MadjM = detcol(M)1,

where Madj is computed – via column determinants – in the same way as in the ordinary
case.

• Schur’s formula for the determinant of block matrices holds:

detcol

(
A B
C D

)
= detcol(A) detcol(D − CA−1B) = detcol(D) detcol

(
A−BD−1C

)
.
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• The Cayley–Hamilton theorem, detcol(t−M)|t=M = 0, holds true.

Further properties of Manin matrices, as well as full proofs of these facts can be found in [5].
Particularly important, for our purposes, is the the fact that a suitable redefinition of the traces
of the powers of the quantum Lax matrix allows us to trade coefficients of the characteristic
polynomials for these “normalised traces”. The key property concerns the quantum counterparts
of the classical Newton identities between these two classes of Ad-invariant quantities. The
coefficients σi of the characteristic polynomial of a n×n matrix M are, as it is well known, the
elementary symmetric polynomials in the eigenvalues λi of M ; however in the ring of symmetric
polynomials in the n variables λi, one can consider other sets of generators and in particular the
so called power sums

τi =
n∑

k=1

λi
k = Tr

(
M i
)
, i = 1, . . . , n.

In the case of matrices with commuting entries, the family {σi}, i = 1, . . . , n and {τi}, i =
1, . . . , n are related by the identities (the Newton identities):

(−1)k+1kσk =
∑

i=0,...,k−1

(−1)iσiτk−i. (3.4)

The same identities hold true, in the case of Manin matrices, for the corresponding quantities.

Theorem 3. Newton identities of the form (3.4) between τi = Tr Mk and the coefficients σi of
the expansion of detcol(t + M) in powers of t hold.

Proof. First one can observe that the following property, whose proof is straightforward,

Tr (t + M)adj = ∂t detcol(t + M)

hold. Then we have that

1
t

∑
k=0,...,∞

Tr
(
(−M/t)k

)
= Tr

1
t + M

= Tr
((

detcol(t + M)
)−1(t + M)adj

)
=
(
detcol(t + M)

)−1Tr (t + M)adj =
(
detcol(t + M)

)−1
∂t detcol(t + M).

The result is obtained substituting −M for M in these formulas. �

The quantization of the traces of powers of the Lax matrices can be defined according to the
Newton identities and the following considerations. First, a straightforward computation that
makes use of the the r-matrix commutation relations (3.1), proves the following

Proposition 5. Let 4

L̂ =
N∑

i=1

X̂i

z − zi
(3.5)

be the Lax matrix for the quantum Gaudin model. For any number of sites N , and different zi

the matrix ∂z − L̂(z) is a Manin matrix.

4In these and subsequent formulæ we use the symbolˆto stress the fact that in the quantum case X̂i are to be
regarded as elements in the universal enveloping algebra of gl(r).
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It might be mentioned that this is not a specific property for the Gaudin system herewith
considered. Indeed, Manin matrices enter other topics in (quantum) integrability; for instance,
e−∂zTgl(r)-Yangian(z) is Manin, where Tgl(r)-Yangian(z) is the Lax (or “transfer”) matrix for the
Yangian algebra Y (gl(n)), satisfying quadratic r-matrix commutation relations (see [3] for more
details).

The “quantization” of the traces of a Lax matrix of the form (3.5) can be achieved as fol-
lows. From Talalaev’s theorem we know that the coefficients QH(z) of characteristic polynomial
detcol(∂z− L̂(z)) do commute (at the quantum level), and from the theorem about Newton iden-
tities we know that we can trade these coefficients for traces of the powers of the corresponding
Manin matrix.

Basically, we simply have to remark that we should not consider the quantities Tr(L̂(z)k),
which, as it has been shown in [6] do not, generally speaking, commute, but rather the traces
of powers of the Manin matrix

Tr
(
(∂z − L̂(z))k

)
=

k∑
j=0

(QTr)k
j (z)∂k−j

z , k = 1, . . . , r. (3.6)

As it is easily seen, there is a recursion relation of the form QTrk
j+1(z) ' QTrk+1

j (z), and hence,
to obtain the expected number of independent quantities, we can consider simply the coefficients
QTrk

k, that is the coefficients of zeroth order of each differential “polynomial” (3.6).
In turn, one sees that these quantities are given by the traces of matrices L̂k(z)[n], that can

be called ”quantum powers” of L(z); these powers are defined by the Faà di Bruno formula (see,
e.g., [9])

L̂
[0]
k (z) = Id, L̂

[i]
k (z) = L̂

[i−1]
k (z)L̂k(z)− ∂

∂z

(
L̂

[i−1]
k (z)

)
.

These arguments work for any Lax matrix of “Gaudin type”, that is, of the form (3.5); in par-
ticular, they hold for the (rational) Lax matrices Li(z) (2.9) associated with the Bending flows,
since the dependence on the spectral parameter is chosen in such a way to fulfil the canonical
r-matrix commutation relations (3.1). Thus computing the traces of the quantum powers of
each of the (quantum counterparts of the) matrices Li(z) of (2.9) one gets a quantization of the
Hamiltonians of the Bending flows.

4 Concluding remarks and open problems

In this paper we have discussed, both in the classical and in the quantum settings, some features
in the theory of (homogeneous) Gaudin models, and concentrated on the Gaudin algebras of
mutually commuting quantities. We have addressed, in particular, the problem of a suitable
definition of a complete set of Hamiltonians in the case when the poles of the Lax matrix LG(z)
of the model glue together. In the classical case, we have shown that a complete set of mutually
commuting Liouville integrals can be obtained by a suitable analysis of the limiting procedure
on LG(z). We have then addressed some features of the (multi)-Hamiltonian properties of the
limits of these (classical) Gaudin systems, in the framework of the Hamiltonian geometry of
Loop algebras. Also, we touched the problem of framing the geometry of these systems within
the combinatorial approach to the geometry of moduli spaces of pointed rational curves. In these
respects, the results herewith collected are somewhat sketchy, and will be developed elsewhere.

In the quantum framework, we have followed the line of [18] as well as previous results of
ours [4, 14]. We reviewed how our gluing procedure for the poles of the Lax matrix of the Gaudin
model can be applied in the quantum case to yield new quantum Gaudin algebras. Also, by
means of results of [3] about the theory of the so-called Manin matrices, we have shown quite
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explicitly the procedure to define, in the quantum Gaudin algebras, a set of generators that
reduce in the classical case to the usual traces of powers of the Lax matrix.

Besides the full solution of the problems in the Hamiltonian and combinatorial aspects of
these systems that were just addressed in this paper, we can envisage at least two domains
where the study of the limits discussed in the present paper might be of some interest. The
first is the realm of Heisenberg-like models, and the theory of Yangian algebras. The second
is the study of non-homogeneous Gaudin models, that, besides of their own interest in the
mathematical theory of integrable (quantum) systems, proved to be important in the theory
of strongly correlated electron systems (see, e.g., [32]). Due to the fact that non homogeneous
systems lack global G-invariance, however, the results of this paper cannot be applied to that
case in a straightforward manner. Work in this direction is in progress.
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