|
SIGMA 5 (2009), 028, 27 pages arXiv:0810.0184
https://doi.org/10.3842/SIGMA.2009.028
Contribution to the Special Issue on Deformation Quantization
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
Ian M. Musson a, Georges Pinczon b and Rosane Ushirobira b
a) Department of Mathematical Sciences, University of
Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
b) Institut de Mathématiques de Bourgogne,
Université de Bourgogne, B.P. 47870, F-21078 Dijon Cedex, France
Received October 01, 2008, in final form February 25, 2009; Published online March 07, 2009
Abstract
We give a complete study of the Clifford-Weyl algebra
C(n,2k) from Bose-Fermi statistics, including Hochschild
cohomology (with coefficients in itself). We show that C(n,2k)
is rigid when n is even or when k ≠ 1. We find all
non-trivial deformations of C(2n+1,2) and study their
representations.
Key words:
Hochschild cohomology; deformation theory; Clifford algebras; Weyl algebras; Clifford-Weyl algebras; parastatistics.
pdf (411 kb)
ps (255 kb)
tex (33 kb)
References
- Alev J., Farinati M.A., Lambre T., Solotar A.L., Homologie des
invariants d'une algèbre de Weyl sous l'action d'un groupe fini,
J. Algebra 232 (2000), 564-577.
- Arnal D., Benamor H., Pinczon G., The structure of
sl(2,1)-supersymmetry: irreducible representations and primitive
ideals, Pacific J. Math. 165 (1994), 17-49.
- Arnaudon D., Bauer L., Frappat L., On Casimir's ghost,
Comm. Math. Phys. 187 (1997), 429-439, q-alg/9605021.
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics
111 (1978), 61-110.
Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. II. Physical applications, Ann. Physics 111 (1978), 111-151.
- Behr E.J., Enveloping algebras of Lie superalgebras, Pacific
J. Math. 130 (1987), 9-25.
- Djokovic D.Z., Hochschild G., Semisimplicity of
2-graded Lie algebras. II, Illinois J. Math. 20
(1976), 134-143.
- Etingof P., Ginzburg V., Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism,
Invent. Math. 147 (2002), 243-348, math.AG/0011114.
- Flato M., Fronsdal C., Parastatistics, highest weight
osp(N,∞) modules, singleton statistics and confinement,
J. Geom. Phys. 6 (1989), 293-309.
- Fulton W., Harris J., Representation theory. A first course,
Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York,
1991.
- Gerstenhaber M., Schack D.S., Algebraic cohomology and
deformation theory, in Deformation Theory of Algebras and Structures
and Applications, Editors M. Hazewinkel and M. Gerstenhaber, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1988.
- Gerstenhaber M., On the deformation of rings and algebras,
Ann. of Math. (2) 79 (1964), 59-103.
- Green H.S., A generalized method of field quantization,
Phys. Rev. 90 (1953), 270-273.
- Lesimple M., Pinczon G., Deformations of the metaplectic
representations, J. Math. Phys. 42 (2001),
1887-1899.
- Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, Vol. 301, Springer-Verlag, Berlin, 1992.
- McConnell J.C., Robson J.C., Noncommutative Noetherian rings.
With the cooperation of L.W. Small, revised ed.,
Graduate Studies in Mathematics, Vol. 30, American Mathematical Society, Providence, RI, 2001.
- Montgomery S., Constructing simple Lie superalgebras from
associated graded algebras, J. Algebra 195
(1997), 558-579.
- Musson I.M., Some Lie superalgebras associated to the Weyl
algebras, Proc. Amer. Math. Soc. 127 (1999),
2821-2827.
- Palev T., Para-Bose and para-Fermi operators as generators of
orthosymplectic Lie superalgebras, J. Math. Phys. 23 (1982), 1100-1102.
- Palev T., Algebraic structure of the Greens's ansatz and its
q-deformed analogue, J. Phys. A: Math. Gen. 27 (1994), 7373-7385, hep-th/9406066.
- Pinczon G., The enveloping algebra of the Lie superalgebra
osp(1,2), J. Algebra 132 (1990), 219-242.
- Pinczon G., On two theorems about symplectic reflection
algebras, Lett. Math. Phys. 82
(2007), 237-253.
- Pinczon G., Ushirobira R., New applications of graded Lie algebras
to Lie algebras, generalized Lie algebras, and cohomology, J. Lie Theory 17 (2007), 633-667, math.RT/0507387.
- Pinczon G., Ushirobira R., Supertrace and superquadratic Lie
structure on the Weyl algebra, and applications to formal inverse
Weyl transform, Lett. Math. Phys. 74
(2005), 263-291, math.RT/0507092.
- Samelson H., Notes on Lie algebras, Van Nostrand Reinhold
Mathematical Studies, no. 23, Van Nostrand Reinhold Co., New York -
London - Melbourne, 1969.
- Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in
Mathematics, Vol. 716, Springer-Verlag, Berlin, 1979.
- Sridharan R., Filtered algebras and representations of Lie
algebras, Trans. Amer. Math. Soc. 100 (1961), 530-550.
- Sternheimer D., Quantization is deformation, Contemp. Math.
391 (2005), 331-352.
- Wigner E.P., Do the equations of motion determine the quantum
mechanical commutation relations?, Phys. Rev. 77
(1950), 711-712.
|
|