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Abstract. The spherical Radon–Dunkl transform Rκ, associated to weight functions in-
variant under a finite reflection group, is introduced, and some elementary properties are
obtained in terms of h-harmonics. Several inversion formulas of Rκ are given with the aid
of spherical Riesz–Dunkl potentials, the Dunkl operators, and some appropriate wavelet
transforms.
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1 Introduction

Let 〈x, y〉 denote the usual Euclidean inner product of x, y ∈ Rd+1, and Sd = {x : ‖x‖ = 1} the
unit sphere in Rd+1. We use dωk to denote the surface (Lebesgue) measure on a k-dimensional
sphere. The spherical Radon transform R is one of the tools in integral geometry, which is
defined, for f ∈ C(Sd), by

Rf(x) = Λd−1

∫
〈x,y〉=0

f(y)dωd−1(y), x ∈ Sd,

where Λ−1
d−1 is the surface area of Sd−1. There are a number of papers devoting to the study of

the spherical Radon transform R by different methods (see [1, 13, 14, 15, 16, 17, 21, 22, 23, 24,
25, 26, 27, 28]), and to its applications to various problems (see [10, 11]). Some deep results
about R were obtained with the aid of spherical harmonics (see [21, 22, 23, 24, 25, 26, 27, 28]),
and furthermore, R is a special case of the spherical means

Mτf(x) =
Λd−1

(1− τ2)(d−1)/2

∫
〈x,y〉=τ

f(y)dωd−1(y), x ∈ Sd,

by taking τ = 0, and also of the spherical Riesz potentials

Iαf(x) =
Γ((1− α)/2)
2πd/2Γ(α/2)

∫
Sd

|〈x, y〉|α−1f(y)dωd(y), x ∈ Sd,

by taking the limit lim
α→0+

Iαf = Rf in some sense (see [22]). The former is a tool in approximation

on the sphere Sd, and the later is one of the research objectives in harmonic analysis on Sd.
The purpose of the present paper is to study an analogous model of the spherical Radon

transform R in Dunkl’s theory. This is based on the definition of the generalized spherical
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mailto:lizk@mail.cnu.edu.cn
mailto:ftsong@tom.com
http://dx.doi.org/10.3842/SIGMA.2009.025
http://www.emis.de/journals/SIGMA/Dunkl_operators.html


2 Zh.-K. Li and F.-T. Song

means Mκ
τ f(x) due to [33] (instead of Mκ

τ , the notation T κθ with τ = cos θ was used there), in
terms of the equation∫ 1

−1
Mκ
τ f(x)g(τ)wλκ(τ)dτ = cκ

∫
Sd

f(y)Vκ[g(〈x, ·〉)](y)h2
κ(y)dωd(y)

for any g in L1([−1, 1];wλκ), where wλκ(t) = c̃λκ+1/2(1− t2)λκ−1/2, Vκ is the intertwining opera-
tor associated to a given finite reflection group, and h2

κ is the related weight function (for details
concerning them and other notations in the equation, see the next section). We define Rκ by
Rκf = Mκ

0 f , and call Rκ the spherical Radon–Dunkl transform. Although Mκ
τ is defined im-

plicitly, it is a proper extension of Mτ and M0
τ = Mτ , and moreover, from [2] and [33, 34, 35, 36],

Mκ
τ shares many properties with Mτ and plays the same roles in weighted approximation and

related harmonic analysis on the sphere Sd. One could expect that the spherical Radon–Dunkl
Transform Rκ would have similar features to R and be a suitable tool in reconstruction of func-
tions in weighted spaces. This is the motivation of the paper. Despite less closed representation,
a further work worth doing is to find applications of Rκ in geometry or other fields.

The paper is organized as follows. In Section 2, some necessary facts in Dunkl’s theory are
reviewed, and in Section 3, the spherical Radon–Dunkl transform Rκ is defined and some of
elementary properties are obtained in terms of h-harmonics. Sections 4 and 5 are devoted to
inversion formulas of Rκ, which are given by means of spherical Riesz–Dunkl potentials Iακ , the
Dunkl operators, and some appropriate wavelet transforms. These conclusions generalize part
of those in [21, 22, 23].

2 Some facts in Dunkl’s theory

Let G be a finite reflection group on Rd+1 with a fixed positive root system R+, normalized so
that 〈v, v〉 = 2 for all v ∈ R+. It is known that G is a subgroup of O(d+ 1) generated by {σv :
v ∈ R+}, where σv denotes the reflection with respect to the hyperplane perpendicular to v,
i.e. xσv = x− 2(〈x, v〉/〈v, v〉)v for x ∈ Rd+1. Let κ be a multiplicity function v 7→ κv ∈ [0,+∞)
defined on R+, with invariance under the action of G. Thus {κv : v ∈ R+} has different values
only as many as the number of G-orbits in R+.

The Dunkl operators are a family of first-order differential-reflection operators Dj , 1 ≤ j ≤
d+ 1, defined by (see [5])

Djf(x) := ∂jf(x) +
∑
v∈R+

κv
f(x)− f(xσv)

〈x, v〉
〈v, ej〉,

for f ∈ C1(Rd+1), where {ei : 1 ≤ i ≤ d+1} is the usual standard basis of Rd+1. As substitutes of
partial differentiations ∂j , these operators are mutually commutative. The associated Laplacian,
called h-Laplacian, is defined by ∆h = D2

1 + · · ·+D2
d+1, which plays roles similar to that of the

usual Laplacian ∆ = ∆0 (see [4]). In terms of the polarspherical coordinates x = rx′, r = ‖x‖,
the operator ∆h can be expressed as (see [33])

∆h =
∂2

∂r2
+

2λκ + 1
r

∂

∂r
+

1
r2

∆h,0,

where ∆h,0 is the associated Laplace-Beltrami operator on Sd, and λκ = γκ + (d − 1)/2 with
γκ =

∑
v∈R+

κv. If γκ = 0, i.e. κv ≡ 0, then Dj = ∂j , 1 ≤ j ≤ d+ 1. In the following, we assume

that γκ > 0, and so λκ > 0.
For each multiplicity function κ, there is a linear operator Vκ intertwining the partial diffe-

rentiations and the Dunkl operators (see [6]). Precisely, if Pn = Pd+1
n denotes the set of homoge-

neous polynomials of degree n in d+1 variables, then the intertwining operator Vκ is determined



Inversion Formulas for the Spherical Radon–Dunkl Transform 3

uniquely by VκPn ⊆ Pn, Vκ1 = 1 and DjVκ = Vκ∂j , 1 ≤ i ≤ d + 1. Vκ commutes with the
group action and is a linear isomorphism on each Pn (n = 0, 1, . . . ). Moreover it is a positive
operator (see [18]) and can be extended to the space of smooth functions and even to the space
of distributions (see [29, 30]).

The intertwining operator Vκ allows to introduce some useful tools in Dunkl’s theory. For
example, the Dunkl transform Fκ is defined in [7] associated with the measure h2

κdx on Rd+1,
where

hκ(x) =
∏
v∈R+

|〈x, v〉|κv .

Fκ is a generalization of the Fourier transform F = F0 and enjoys properties similar to those
of F (see [3, 7, 19]).

For 1 ≤ p < ∞, denote by ‖f‖κ,p =
{
cκ

∫
Sd |f |ph2

κdωd
}1/p the norm of f ∈ Lp(Sd;h2

κ), with

c−1
κ =

∫
Sd h

2
κdωd, and by ‖φ‖λκ,p =

{∫ 1
−1 |φ|

pwλκdt
}1/p

the norm of φ ∈ Lp([−1, 1], wλκ), where

wλκ(t) = c̃λκ+1/2(1− t2)λκ−1/2, c̃λ = π−1/2Γ(λ+ 1/2)/Γ(λ). When p = ∞, ‖f‖∞ = ‖f‖κ,∞ and
‖φ‖∞ = ‖φ‖κ,∞ are defined as usual.

The functions in Hh,d+1
n := Pd+1

n ∩ ker ∆h are called h-harmonic polynomials of degree n, and
the spherical h-harmonics of degree n are their restrictions on Sd. The orthogonality theorem

in [4] asserts that if P ∈ Pd+1
n , then

∫
Sd PQh

2
κdωd = 0 for all Q ∈

n−1
∪
k=0

Pd+1
k , if and only if P is

h-harmonic, i.e. ∆hP = 0. Moreover L2(Sd;h2
κ) =

∞∑
n=0

⊕
Hh,d+1
n .

If Yn(h2
κ; f ;x) is the projection of f ∈ L1(Sd;h2

κ) to Hh,d+1
n , then the h-harmonic expansion

of f is given by

f(x) ∼
∞∑
n=0

Yn
(
h2
κ; f ;x

)
, x ∈ Sd. (1)

The projection Yn(h2
κ; f ;x) takes the form

Yn(h2
κ; f ;x) = cκ

∫
Sd

f(y)Pn
(
h2
κ;x, y

)
h2
κ(y)dωd(y), (2)

where Pn(h2
κ;x, y) is the reproducing kernel of the spaceHh,d+1

n . A compact formula of Pn(h2
κ;x, y)

is (see [32])

Pn(h2
κ;x, y) =

n+ λκ
λκ

Vκ
[
Cλκ
n (〈x, ·〉)

]
(y), (3)

with Cλκ
n , the Gegenbauer polynomial of degree n with parameter λκ. It is noted that (see [33])

∆h,0Yn = −n(n+ 2λκ)Yn, Yn ∈ Hh,d+1
n . (4)

When κv = 0 for all v ∈ R+, we have V0 = id, and hence, Pn(h2
κ;x, y) reduces to the usual

zonal polynomial for the ordinary spherical harmonics Pn(x, y) = n+(d−1)/2
(d−1)/2 C

(d−1)/2
n (〈x, y〉).

A useful integration formula for the intertwining operator Vκ is∫
Sd

Vκf(x)h2
κ(x)dωd(x) =

c−1
κ Γ(λκ + 1)
π(d+1)/2Γ(γκ)

∫
Bd+1

f(x)
(
1− |x|2

)γκ−1
dx. (5)

The formula is proved in [31] when f is a polynomial. Applying density of polynomials and
positivity of Vκ, this allows us to extend the intertwining operator Vκ acting on those functions f
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on the sphere Sd which are restrictions of functions in L1(Bd+1; (1 − |x|2)γκ−1), and moreover,
the formula (5) is true for these functions too and Vκf ∈ L1(Sd;h2

κ). In particular, if φ ∈
L1([−1, 1];wλκ), then for each y ∈ Sd,∫

Bd+1

φ(〈x, y〉)
(
1− |x|2

)γκ−1
dx =

π(d+1)/2Γ(γκ)
Γ(λκ + 1)

∫ 1

−1
φ(t)wλκ(t)dt, (6)

i.e. f(x) = φ(〈x, y〉) ∈ L1(Bd+1; (1 − |x|2)γκ−1), and hence Vκ[φ(〈·, y〉)] is well defined and in
L1(Sd;h2

κ). In addition, we have the following symmetric relation

Vκ[φ(〈·, y〉)](x) = Vκ[φ(〈x, ·〉)](y), for a.e. (x, y) ∈ Sd × Sd. (7)

The validity of (7) for polynomials and for all (x, y) ∈ Sd×Sd follows from Gegenbauer expansions
and the symmetry of the reproducing kernels Pn(h2

κ;x, y), If φ ∈ L1([−1, 1];wλκ) and φ1 is
a univariate polynomial, then applying (5) and (6),∫

Sd

∫
Sd

|Vκ[φ(〈·, y〉)](x)− Vκ[φ(〈x, ·〉)](y)|h2
κ(x)h

2
κ(y)dωd(x)dωd(y)

=
∫

Sd

∫
Sd

|Vκ[(φ− φ1)(〈·, y〉)](x)− Vκ[(φ− φ1)(〈x, ·〉)](y)|h2
κ(x)h

2
κ(y)dωd(x)dωd(y)

≤ 2c−2
κ

∫ 1

−1
|φ(t)− φ1(t)|wλκ(t)dt,

which implies (7) by the density of polynomials in L1([−1, 1];wλκ). Following the above remarks,
the Funk–Hecke formula for h-harmonics proved in [32] (for continuous functions there only)
holds also for φ ∈ L1([−1, 1];wλκ), that is

cκ

∫
Sd

Vκ[φ(〈·, y〉)](x)Hn(x)h2
κ(x)dωd(x) = Ln(φ)Hn(y) (8)

for each Hn ∈ Hh,d+1
n and y ∈ Sd, where

Ln(φ) =
∫ 1

−1
φ(t)

Cλκ
n (t)

Cλκ
n (1)

wλκ(t)dt. (9)

The convolution f ∗κ φ of two functions f ∈ L1(Sd;h2
κ) and φ ∈ L1([−1, 1];wλκ) is defined

in [34], by

f ∗κ φ(x) = cκ

∫
Sd

f(y)Vκ[φ(〈x, ·〉)](y)h2
κ(y)dωd(y). (10)

The Young inequality concerning such convolution is proved in [34], that is, for p, q, r ≥ 1 with
r−1 = p−1 + q−1 − 1,

‖f ∗κ φ‖κ,r ≤ ‖f‖κ,p‖φ‖λκ,q. (11)

A typical example of Dunkl’s theory is the case when G = Zd+1
2 , for which, the function hκ(x)

has the form hκ(x) = |x1|κ1 · · · |xd+1|κd+1 and the intertwining operator Vκ is given by

Vκf(x) = c̃κ

∫
[−1,1]d+1

f(x1t1, . . . , xd+1td+1)
d+1∏
i=1

(1 + ti)(1− t2i )
κi−1dt1 · · · dtd+1, (12)

where c̃κ = c̃κ1 · · · c̃κd+1
.



Inversion Formulas for the Spherical Radon–Dunkl Transform 5

3 The spherical Radon–Dunkl transform

For f ∈ L1(Sd;h2
κ), its generalized spherical means Mκ

τ f(x) due to [33] is defined by the equation∫ 1

−1
Mκ
τ f(x)φ(τ)wλκ(τ)dτ = f ∗κ φ(x) (13)

for any φ in L1([−1, 1];wλκ). Since, for φ ∈ L∞(Sd),∣∣∣∣∫ 1

−1
Mκ
τ f(x)φ(τ)wλκ(τ)dτ

∣∣∣∣ ≤ ‖f‖κ,1‖φ‖∞,

it follows that, for each x ∈ Sd, the function ψx(τ) = Mκ
τ f(x) ∈ L1([−1, 1];wλκ). This shows that

for almost all τ ∈ [−1, 1], Mκ
τ f is well defined. To give further illustration of Mκ

τ , we introduce
the space W p

m(Sd;h2
κ)(⊆ Lp(Sd;h2

κ)) of functions for m ≥ 0, such that for f ∈ W p
m(Sd;h2

κ),
there exist some g ∈ Lp(Sd;h2

κ) satisfying Y0(h2
κ; f) = Y0(h2

κ; g) and [n(n+ 2λκ)]m/2Yn(h2
κ; f) =

Yn(h2
κ; g) for all n = 1, 2, . . . . In view of (4), we formally write g = (−∆h,0)m/2f . It is noted

that for even m, Cm(Sd) ⊆W p
m(Sd;h2

κ) (1 ≤ p ≤ ∞). The following properties of Mκ
τ are proved

in [33, 34].

Proposition 1.

(i) If f0(x) ≡ 1, then Mκ
τ f0(x) ≡ 1.

(ii) For each τ ∈ [−1, 1], there is an extension of Mκ
τ to Lp(Sd;h2

κ) (1 ≤ p < ∞), or C(Sd)
(p = ∞), such that

‖Mκ
τ f‖κ,p ≤ ‖f‖κ,p, τ ∈ [−1, 1].

(iii) For f ∈ L1(Sd;h2
κ),

Yn(h2
κ;M

κ
τ f ;x) =

Cλκ
n (τ)

Cλκ
n (1)

Yn
(
h2
κ; f ;x

)
,

and in particular, ∆h,0(Mκ
τ f) = Mκ

τ (∆h,0f) if ∆h,0f ∈ L1(Sd;h2
κ).

Proof. Here we give an independent, but simpler proof for part (ii) as follows. For all φ ∈
L1([−1, 1]; wλκ) and g ∈ Lp′(Sd;h2

κ), it follows from (13) that∫ 1

−1
φ(τ)ξ(τ)wλκ(τ)dτ = cκ

∫
Sd

(f ∗κ φ)(x)g(x)h2
κ(x)dωd(x),

where ξ(τ) = cκ
∫

Sd M
κ
τ f(x) · g(x)h2

κ(x)dωd(x). By using (7) and (10), the right-hand side above
becomes cκ

∫
Sd f(y)(g ∗κ φ)(y)h2

κ(y)dωd(y), and then, by applying Hölder’s inequality and the
Young inequality (11), its absolute value is dominated by ‖f‖κ,p‖g‖κ,p′‖φ‖λκ,1. This gives that
supτ∈[−1,1] |ξ(τ)| ≤ ‖f‖κ,p‖g‖κ,p′ , which means that, for almost all τ ∈ [−1, 1], ‖Mκ

τ f‖κ,p ≤
‖f‖κ,p. If f is a polynomial, part (iii) implies that Mκ

τ f(x) is a continuous function of (τ, x) ∈
[−1, 1] × Sd, so that ‖Mκ

τ f‖κ,p ≤ ‖f‖κ,p is true for all τ ∈ [−1, 1] in this case. Finally, from
density of the set of polynomials, for each τ ∈ [−1, 1], Mκ

τ can be extended to all functions in
Lp(Sd;h2

κ) (1 ≤ p < ∞), or C(Sd). Following this, part (iii) also holds for f ∈ L1(Sd;h2
κ) and

each τ ∈ [−1, 1], and moreover,

Mκ
τ f ∼

∞∑
n=0

Cλκ
n (τ)

Cλκ
n (1)

Yn(h2
κ; f ;x). (14)

We note that when f is even in Sd, Mτf is even for τ ∈ (−1, 1). �
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The following proposition gives a pointwise description of Mκ
τ for a larger class of functions.

Proposition 2. For f ∈ W 2
m(Sd;h2

κ) with m > λκ + 1, Mκ
τ f(x) is a continuous function of

(τ, x) ∈ [−1, 1]× Sd and

Mκ
τ f(x) =

∞∑
n=0

Cλκ
n (τ)

Cλκ
n (1)

Yn
(
h2
κ; f ;x

)
,

the series on the right-hand side being absolutely and uniformly convergent.

Proof. It is noted that for t ∈ [−1, 1], |Cλκ
n (t)| ≤ Cλκ

n (1) = (2λκ)n/n! ' n2λκ−1 [8, p. 19].
From (2), for g ∈ L2(Sd;h2

κ) and all x ∈ Sd we have |Yn(h2
κ; g;x)| ≤ ‖g‖κ,2‖Pn(hκ;x, ·)‖κ,2. In

view of orthogonality of h-harmonics and from (3),

‖Pn(hκ;x, ·)‖2
κ,2 = Pn(hκ;x, x) ≤ λ−1

κ (n+ λκ)Cλκ
n (1) ' λ−1

κ n2λκ .

Therefore |Yn(h2
κ; g;x)| ≤ c‖g‖κ,2nλκ . If f ∈ W 2

m(Sd;h2
κ), then for n ≥ 1, Yn(h2

κ; f ;x) = [n(n +
2λκ)]−m/2Yn(h2

κ; (−∆h,0)m/2f ;x), so that |Yn(h2
κ; f ;x)| ≤ c‖(−∆h,0)m/2f‖κ,2nλκ−m. Hence,

whenm > λκ+1, the series in (14) converges absolutely and uniformly for (τ, x) ∈ [−1, 1]×Sd. In
view of the uniqueness of h-harmonic expansion following from its Cesàro summability (see [31]),
the conclusions in the proposition are proved. �

Now we define the transform Rκ by

Rκf = Mκ
0 f,

and call Rκ the spherical Radon–Dunkl transform. By Proposition 1 (ii), Rκf is well defined
for f ∈ L1(Sd;h2

κ), and moreover, from Propositions 1 and 2, we have the following corollary.

Corollary 1.

(i) For f ∈ Lp(Sd;h2
κ) (1 ≤ p <∞), or f ∈ C(Sd) (p = ∞), we have ‖Rκf‖κ,p ≤ ‖f‖κ,p, and

Rκf ∼
∞∑
n=0

bnYn
(
h2
κ; f ;x

)
, (15)

where

bn =

{
(−1)

n
2

Γ(λκ+1/2)
Γ(1/2)

Γ((n+1)/2)
Γ(λκ+(n+1)/2) , for n even;

0, for n odd.
(16)

(ii) For f ∈W 2
m(Sd;h2

κ) with m > λκ + 1, Rκf(x) is a continuous function on Sd and

Rκf(x) =
∞∑
n=0

bnYn
(
h2
κ; f ;x

)
,

where the series on the right-hand side is absolutely and uniformly convergent.

The numbers bn = Cλκ
n (0)/Cλκ

n (1) are computed by using 10-9(3) and 10-9(19) in [9].
The following is a nontrivial example of Rκ. We consider the group G = Zd+1

2 , with κ =
(κ1, 0, . . . , 0) and κ1 > 0. In this case, hκ(x) = |x1|κ1 and the intertwining operator Vκ in (12)
reduces to

Vκf(x) = c̃κ1

∫ 1

−1
f(x1t, x̃)(1 + t)

(
1− t2

)κ1−1
dt,

where x = (x1, x̃) with x̃ = (x2, . . . , xd+1) ∈ Rd.
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We shall show that, for f ∈ C(Sd) and for x1 6= 0,

Mκ
τ f(x) =

cκc̃κ1w
−1
λκ

(τ)
|x1|2κ1

∫
Ωτ

f(y)|〈x, y〉 − τ |κ1−1|〈xσ, y〉 − τ |κ1dωd(y), (17)

where Ωτ = {y ∈ Sd : y = (y1, ỹ) with |〈x̃, ỹ〉 − τ | < |x1y1|}, and σ is the reflection such that
xσ = (−x1, x2, . . . , xd+1). Indeed, from the above formula for Vκ,

Vκ[φ(〈x, ·〉)](y) = c̃κ1

∫ 1

−1
φ(x1y1t+ 〈x̃, ỹ〉)(1 + t)(1− t2)κ1−1dt.

When y1 6= 0, taking the substitution of variables t = (τ − 〈x̃, ỹ〉)/(x1y1), we get

Vκ[φ(〈x, ·〉)](y) =
c̃κ1

|x1y1|2κ1

∫ 〈x̃,ỹ〉+|x1y1|

〈x̃,ỹ〉−|x1y1|
φ(τ)|〈x, y〉 − τ |κ1−1|〈xσ, y〉 − τ |κ1dτ.

Substituting this into the definition (10) of f ∗κ φ, we have

f ∗κ φ(x) =
∫ 1

−1
Aτf(x)φ(τ)wλκ(τ)dτ

for all φ ∈ L1([−1, 1];wλκ), where Aτf(x) denotes the expression on the right-hand side of (17).
Then from (13), Aτf(x) = Mκ

τ f(x), so that (17) is proved.
Taking τ = 0 in (17), we get that, for f ∈ C(Sd) and for x1 6= 0,

Rκf(x) =
cκc̃κ1 c̃

−1
λκ+1/2

|x1|2κ1

∫
Ω0

f(y)|〈x, y〉|κ1−1|〈xσ, y〉|κ1dωd(y).

4 Inversion formulas for Rκ

by means of spherical Riesz–Dunkl potentials

For f ∈ L1(Sd;h2
κ) and <α > 0, α 6= 1, 3, 5, . . . , we define its spherical Riesz–Dunkl potential Iακ f

by

Iακ f(x) = Cκ,α

∫
Sd

f(y)Vκ(|〈x, ·〉|α−1)(y)h2
κ(y)dωd(y), (18)

where Cκ,α =
√
πΓ((1−α)/2)

Γ(λκ+1)Γ(α/2)cκ.

Proposition 3. For <α > 0, α 6= 1, 3, 5, . . . , Iακ f is well defined for each f ∈ L1(Sd;h2
κ), and

moreover, we have the following statements:

(i) for 1 ≤ p ≤ ∞, there exists a constant c > 0, such that for all f ∈ Lp(Sd;h2
κ), ‖Iακ f‖κ,p ≤

c‖f‖κ,p;
(ii) if the h-harmonic expansion of a function f ∈ L1(Sd;h2

κ) is given by (1), then Iακ f has the
following expansion

Iακ f(x) ∼
∞∑
n=0

bn,αYn
(
h2
κ; f ;x

)
, x ∈ Sd, (19)

where

bn,α =

 (−1)
n
2

Γ((n+ 1− α)/2)
Γ(λκ + (n+ 1 + α)/2)

, for n even;

0, for n odd.
(20)
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The conclusions in the proposition are contained in Proposition 2.9 of [34]. Here we give
a short presentation. Since Iακ f = cf ∗κ φ with φ(t) = |t|α−1 ∈ L1([−1, 1];wλκ), part (i) follows
from the Young inequality (11) immediately. For part (ii), since Vκ(|〈·, y〉|α−1) ∈ L1(Sd;h2

κ)
from (5) and (6), we have, using (2), (8) and (9),

Yn
(
h2
κ;Vκ

(
|〈·, y〉|α−1

)
;x

)
= LnPn

(
h2
κ;x, y

)
, (21)

where

Ln =
∫ 1

−1
|t|α−1 C

λκ
n (t)

Cλκ
n (1)

wλκ(t)dt.

From (2), (7) and (18), one can get

Yn
(
h2
κ; I

α
κ f ;x

)
= Cκ,α

∫
Sd

f(z)Yn
(
h2
κ;Vκ

(
|〈·, z〉|α−1

)
;x

)
h2
κ(z)dωd(z),

and then applying (21), Yn(h2
κ; I

α
κ f ;x) = bn,αYn(h2

κ; f ;x) with bn,α = c−1
κ Cκ,αLn. It is clear that

bn,α = 0 for odd n. When n is even, we use 7.311(2) in [12], part (v) in [8, p. 19], and some
properties of the gamma function, to get the stated value of bn,α.

It is easy to see that (19) and (20) allow us to extend the family {Iακ : <α > 0, α 6= 1, 3, 5, . . . }
to a larger one, which leads to the following definition. We put Π = {α ∈ C : α 6= 1, 3, 5, . . . }.

Definition 1. Let α ∈ Π. For f ∈ L1(Sd;h2
κ), we define Iακ f by the following h-harmonic

expansion

Iακ f ∼
∞∑
n=0

bn,αYn(h2
κ; f ;x), x ∈ Sd, (22)

where bn,α is given by (20).

It is clear that Iακ f is well defined for f ∈ C∞(Sd). In general, Iακ f may be a distribution on Sd.
Since |bn,α| ≤ cn−λκ−<α, then Iακ f ∈ L2(Sd;h2

κ) when f ∈ L2(Sd;h2
κ) and <α ≥ −λκ. For <α <

−λκ and m ≥ −λκ−<α, since for n ≥ 1, Yn(h2
κ; f ;x) = [n(n+2λκ)]−m/2Yn(h2

κ; (−∆h,0)m/2f ;x),
we also have Iακ f ∈ L2(Sd;h2

κ) when f ∈ W 2
m(Sd;h2

κ). We denote by W 2
m, e(Sd;h2

κ) the subspace
of even functions of W 2

m(Sd;h2
κ).

Theorem 1. If α, −2λκ − α ∈ Π and m ≥ max{0,−λκ − <α}, then Iακ is an isomorphism
between W 2

m, e(Sd;h2
κ) and W 2

m+λκ+<α, e(Sd;h2
κ), and

(Iακ )−1 = I−2λκ−α
κ .

In fact, proceeding the above process, it is not difficult to show that for f ∈W 2
m, e(Sd;h2

κ) with
m ≥ max{0,−λκ−<α}, we have I−2λκ−α

κ Iακ f = f . For f ∈W 2
m′, e(S

d;h2
κ) withm′ = m+λκ+<α,

since m′ ≥ max{0,−λκ − <α′} with α′ = −2λκ − α, we again have I−2λκ−α′
κ Iα

′
κ f = f , i.e.

Iακ I
−2λκ−α
κ f = f . Combining the two cases proves the theorem.
To go further, for r ∈ Z+ (nonnegative integers) we define

Pr,α(∆h, 0) =


the identity operator, r = 0,

4−r
r∏
j=1

[−∆h, 0 + aj ], r ≥ 1,

where aj = (2λκ − 2r + 2j + α− 1)(2r − 2j + 1− α).
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Lemma 1. If α ∈ Π, and r ∈ Z+ such that 2r−2λκ−α ∈ Π, then for even n and Yn ∈ Hh, d+1
n ,

Pr,α(∆h, 0)I2r−2λκ−α
κ Iακ Yn = Yn.

Proof. From (19) and (20), we have

I2r−2λκ−α
κ Iακ Yn =

Γ((n+ 2λκ − 2r + α+ 1)/2)Γ((n+ 1− α)/2)
Γ((n+ 2r − α+ 1)/2)Γ((n+ 2λκ + α+ 1)/2)

Yn.

Furthermore, from (4),

Pr,α(∆h,0)Yn =
r∏
j=1

(
n+ 2λκ + α− 1

2
− r + j

) (
n+ 1− α

2
+ r − j

)
Yn.

Using the properties of Γ-functions, the result is obtained. �

The following theorem is a direct consequence of the above lemma.

Theorem 2. If α ∈ Π, and r ∈ Z+ such that 2r − 2λκ − α ∈ Π and r ≥ λκ + <α/2, then for
even f ∈ C∞(Sd) and g = Iακ f , we have the inversion formula

f = Pr,α(∆h,0)I2r−2λκ−α
κ g.

Now we turn to the inversion problem of the spherical Radon–Dunkl transform Rκ. From
(15), (16), (20) and (22), we see that

Rκf = π−1/2Γ(λκ + 1/2)I0
κf. (23)

This consistency can be also seen from the following equalities

Γ(λκ + 1)Γ(α/2)√
πΓ((1− α))/2

Iακ f(x) = f ∗κ φ =
∫ 1

−1
Mκ
τ f(x)φ(τ)wλκ(τ)dτ (24)

in view of (13) and (18), where φ(t) = |t|α−1 ∈ L1([−1, 1];wλκ). Assume that f ∈ W 2
m(Sd;h2

κ)
with m > λκ + 1. By Proposition 2, for each x ∈ Sd, Mκ

τ f(x) is a continuous function of
τ ∈ [−1, 1]. Dividing each part of (24) by Γ(α/2) and taking limit for α → 0+, we regain the
relation (23).

From Theorems 1 and 2, we obtain the inversion formulas for the spherical Radon–Dunkl
transform Rκ.

Theorem 3. Rκ is an isomorphism between W 2
m,e(Sd;h2

κ) and W 2
m+λκ,e

(Sd;h2
κ) with m ≥ 0, and

R−1
κ =

√
π

Γ(λκ + 1/2)
I−2λκ
κ .

Theorem 4. If r ∈ Z+ such that 2r − 2λκ ∈ Π and r ≥ λκ, then for even f ∈ C∞(Sd) and
g = Rκf , we have the inversion formula

f =
√
π

Γ(λκ + 1/2)
Pr,0(∆h,0)I2r−2λκ

κ g.

For a special case, we have some simple inversion formulas for Rκ, which are interesting
generalizations of those about the usual spherical Radon transform (see [15, 16, 22]).
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Corollary 2. If λκ is a positive integer, then an even f ∈ C∞(Sd) can be recovered by

(i) f = c′Pr,0(∆h,0)RκRκf,

with r = λκ, c′ = π/Γ(λκ + 1/2)2, and

Pr,0(∆h,0) = 4−r
r∏
j=1

[−∆h,0 + (2j − 1)(2r − 2j + 1)];

and

(ii) f = c′′Pr,0(∆h,0)
[∫

Sd

Rκf(y)Vκ(|〈x, ·〉|)(y)h2
κ(y)dωd(y)

]
,

with r = λκ + 1, c′′ = −2π3/2cκ/[Γ(λκ + 1)Γ(λκ + 1/2)2], and

Pr,0(∆h,0) = 4−r
r∏
j=1

[−∆h,0 + (2j − 3)(2r − 2j + 1)].

5 Inversion formulas for Rκ by means of associated wavelets

In this section, we shall use, for a suitably chosen ψ defined on [0,∞), the wavelet-like transform

Wκf(t, x) = f ∗κ ψt(x), ψt(τ) = t−1ψ(τ/t), (25)

for (t, x) ∈ (0,∞)× Sd, to present the inverse of the spherical Radon–Dunkl transform Rκ and
itself. Although Rκ is defined implicity and the intertwining operator Vκ is involved in the
definition of Wκ, the approaches in studying the usual spherical Radon transform (see [21], for
example) could be transplanted to Rκ.

The first lemma below reveals a relation of the spherical Radon–Dunkl transform Rκ with
the one-dimensional fractional integral, and the second gives a representation of the successive
action of Rκ and Wκ to a function. We shall use a modified notation of the fractional integral as

Bδφ(u) =
2

Γ(δ)

∫ √
u

0
φ(v)

(
u− v2

)δ−1
dv, u > 0, (26)

for δ > 0, which will simplify some expressions.

Lemma 2. For even function f ∈ L1(Sd;h2
κ) and 0 < s < 1, we have

Mκ
s (Rκf) =

λκπ
−1

wλκ(s)
Bλκ(Mκ

τ f)
(
1− s2

)
, (27)

where the action of Bλκ to Mκ
τ f is associated with τ -variable.

Proof. From the product formula of the Gegenbauer polynomial Cλκ
2n (see [8, p. 203]), we have

Cλκ
2n (s)

Cλκ
2n (1)

Cλκ
2n (0)

Cλκ
2n (1)

= 2
∫ 1

0

Cλκ
2n (u

√
1− s2)

Cλκ
2n (1)

wλκ−1/2(u)du.

By Proposition 1 (iii), the three quotients above are the coefficients of a member Y2n in Hh,d+1
2n

under action of Mκ
s , Rκ(= Mκ

0 ), and Mκ
u
√

1−s2 , respectively. Therefore,

Mκ
s (RκY2n) = 2

∫ 1

0

(
Mκ
u
√

1−s2Y2n

)
wλκ−1/2(u)du.

Making substitution of variables u = v/
√

1− s2, (27) is proved for Y2n. By Proposition 1 (ii),
both sides of (27) are bounded operators in L1(Sd;h2

κ), and hence, the validity of (27) for general
even f ∈ L1(Sd;h2

κ) follows from density of the set of h-harmonics. �
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Lemma 3. For even f ∈ L1(Sd;h2
κ) and ψ ∈ L1([0,∞); dx), we have

Wκ(Rκf)(t, x) =
2λκ
π

∫ 1

0
Mκ
s f(x)(Bλκψt)

(
1− s2

)
ds, (28)

provided the integral on the right-hand side exists with |f | and |ψ| instead of f , ψ.

Proof. From (13), (25) and (27), we have

Wκ(Rκf)(t, x) =
∫ 1

−1
Mκ
s (Rκf)(x) · ψt(s)wλκ(s)ds =

2λκ
π

∫ 1

0
Bλκ(Mκ

τ f)
(
1− s2

)
· ψt(s)ds,

and then, substituting the formula for Bλκ(Mκ
τ f) from (26), and making changes of variables,

we prove the equality in (28). �

Theorem 5. Let∫ ∞

0
sjψ(s)ds = 0 for all j = 0, 2, 4, . . . , 2[λκ], (29)∫ ∞

1
sβ |ψ(s)|ds <∞ for some β > 2λκ. (30)

Then for even f ∈ Lp(Sd;h2
κ) (1 ≤ p <∞), or C(Sd) (p = ∞), we have

lim
ε→0+

‖Tεf − f‖κ,p = 0, (31)

where

Tεf(x) = C̃−1
ψ

∫ ∞

ε

(Wκg)(t, x)
t2λκ+1

dt, ε > 0, (32)

with g = Rκf and

C̃ψ =


−2Γ(1− λκ)

π

∫ ∞

0
s2λκψ(s)ds, if λκ ∈̄N,

4(−1)λκ+1

πΓ(λκ)

∫ ∞

0
s2λκψ(s) log sds, if λκ ∈ N.

(33)

In addition, lim
ε→0+

Tεf(x) = f(x) for almost all x ∈ Sd.

Proof. Under the assumptions, by [20, Lemma 4.12], we have
∫∞
0 |Bλκψ(s)|ds < ∞. To

prove (31) in general, we only need to show that it is valid for Y2n ∈ Hh,d+1
2n , and

‖Tεf‖κ,p ≤ c‖f‖κ,p, ε > 0, (34)

where the constant c is independent of ε. The key step is to rewrite Tε into a convolution
operator with an approximate identity, that is,

Tεf(x) =
2λκ(λκ + 1)
π(2λ+ 1)C̃ψ

f ∗κ Kε, (35)

where

Kε(τ) = [wλκ+1(τ)]−1(Bλκ+1ψ)
(
ε−2

(
1− τ2

))
. (36)
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Indeed, applying Lemma 3 to (32) gives that

C̃ψTεf(x) =
2λκ
π

∫ 1

0
Mκ
s f(x)K̃ε(s)ds, (37)

where K̃ε(s) =
∫∞
ε

(Bλκψt)(1−s2)

t2λκ+1 dt. Inserting the formula of Bλκψt from (26), and then, making
changes of variables by t = ξ−1/2 and v = ηξ−1/2, we get

K̃ε(s) =
1

Γ(λκ)

∫ ε−2

0

∫ √
ξ(1−s2)

0
ψ(η)[ξ(1− s2)− η2]λκ−1dηdξ.

Changing order of the integrals, it follows that K̃ε(s) = λκ+1
2λκ+1Kε(s)wλκ(s). Substituting this

into (37) and using (13) yields (35).
By Lemma 2.4 in [21], we have

∫∞
0 u−1(Bλκ+1ψ)(u)du = πC̃ψ/λκ, and Bλκ+1ψ(u) = O(uλκ)

for 0 < u ≤ 1, and O(u−ρ) for u > 1 with some ρ > 0. From these and in view of (9) and (36),
it follows that

L2n(Kε) =
2λκ + 1
λκ + 1

∫ 1

0
(Bλκ+1ψ)

(
1− s2

ε2

)
Cλκ

2n (s)ds
(1− s2)Cλκ

2n (1)

=
λκ + 1/2
λκ + 1

∫ ε−2

0
u−1(Bλκ+1ψ)(u)

Cλκ
2n (

√
1− ε2u)√

1− ε2uCλκ
2n (1)

du, (38)

which approaches to π(λκ+1/2)
λκ(λκ+1) C̃ψ as ε→ +0. For Y2n ∈ Hh,d+1

2n , from (8) we have Y2n ∗κ Kε =
L2n(Kε)Y2n, and by (35), lim

ε→0+
TεYn = Yn uniformly on Sd.

To prove (34), by (11), it suffices to show ‖Kε‖λκ,1 ≤ c uniformly for ε > 0 (essentially for
0 < ε ≤ 1). In fact, similarly to (38), we have ‖Kε‖λκ,1 = L0(|Kε|), approaching to

λκ + 1/2
λκ + 1

∫ ∞

0
u−1|(Bλκ+1ψ)(u)|du < +∞,

as ε→ +0. Thus (34), and so (31), are proved.
In order to prove Tεf to be convergent almost everywhere, we need the associated maximal

function T∗f(x) = sup
0<ε≤1

|Tεf(x)|. We shall show that T∗f is dominated by the maximal function

introduced in [35]

Mκf(x) = sup
0<θ≤π

∫ θ
0 (Mκ

cosϕ|f |)(x)(sinϕ)2λκ dϕ∫ θ
0 (sinϕ)2λκ dϕ

,

for f ∈ L1(Sd;h2
κ), that is

T∗f(x) ≤ cMκf(x), x ∈ Sd. (39)

The pointwise estimates of Bλκ+1ψ(u) can be written as Bλκ+1ψ(u) = O(uλκ(u + 1)−λκ−ρ),
which implies the following estimate for Kε(cos θ)

Kε(cos θ) = O(mε(θ)), mε(θ) =
ε2ρ(sin θ)−1

(ε+ sin θ)2λκ+2ρ
,

with ρ > 0. The function mε(θ) does not suit the process of integration by part in the proof of
Theorem 2.6 in [35], since m(0) = 0. Here we give a proof for the case.
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From (13) and (35),

|Tεf(x)| ≤ c

∫ π/2

0
(Mκ

cos θ|f |)(x)mε(θ)(sin θ)2λκdθ, (40)

where the evenness of Mκ
τ f is used. Splitting the interval [0, π/2] into

⋃
j [2

jε, 2j+1ε], we evaluate

each integral Uj =
∫ 2j+1ε
2jε separately. For j ≤ 0, since ε+ sin θ � ε, we have

Uj ≤
c2−j

ε2λκ+1

∫ 2j+1ε

0
(Mκ

cos θ|f |)(x)(sin θ)2λκdθ ≤ c22λκjMκf(x);

and for j > 0, since ε+ sin θ � θ,

Uj ≤
cε2ρ

(2jε)2λκ+2ρ+1

∫ 2j+1ε

0
(Mκ

cos θ|f |)(x)(sin θ)2λκdθ ≤ c2−2ρjMκf(x).

Collecting these estimates into (40) yields (39).
By Theorem 2.1 in [2], T∗ is of weak (1,1), and strong (p, p) boundedness. Combining with

the uniformly convergence of Tε for h-harmonics, for general f ∈ L1(Sd;h2
κ), Tεf converges to f

almost everywhere. The proof of Theorem 5 is completed. �

In the following, we state two theorems, without proof, which are analogs of Theorems 1.2
and 1.4 in [21]. One is about the reproducing property of the spherical Radon–Dunkl trans-
form Rκ, and the other illustrates the range Rκ(L1(Sd;h2

κ)).

Theorem 6. Let∫ ∞

0
ψ(s)ds = 0,

∫ ∞

0
|ψ(s) log s|ds <∞.

Then for f ∈ Lp(Sd;h2
κ) (1 ≤ p <∞), or C(Sd) (p = ∞), we have

lim
ε→0+

‖T̃εf −Rκf‖κ,p = 0,

where T̃εf(x) = C̄−1
ψ

∫∞
ε t−1(Wκf)(t, x)dt (ε > 0), with C̄ψ = 2cλκ

∫∞
0 ψ(s) log 1

sds.

Theorem 7. Let ψ satisfy conditions (29) and (30), g ∈ Lp(Sd;h2
κ) (1 ≤ p < ∞), or C(Sd)

(p = ∞), and C̃φ 6= 0 be the constant in (33). Then the following statements are equivalent:

(i) g ∈ Rκ(Lp(Sd;h2
κ));

(ii) the integrals Sεg =
∫∞
ε t−2λκ−1(Wκg)(t, x)dt converge in the Lp(Sd;h2

κ)-norm.

If 1 < p <∞, then (i) and (ii) are equivalent to

(iii) sup
ε>0

‖Sεg‖κ,p <∞.
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[30] Trimèche K., Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral
Transforms Spec. Funct. 13 (2002), 17–38.

[31] Xu Y., Integration of the intertwining operator for h-harmonic polynomials associated to reflection groups,
Proc. Amer. Math. Soc. 125 (1997), 2963–2973.

[32] Xu Y., Intertwining operator and h-harmonic associated with reflection groups, Canad. J. Math. 50 (1998),
193–209.

[33] Xu Y., Approximation by means of h-harmonic polynomials on the unit sphere, Adv. Comput. Math. 21
(2004), 37–58.

[34] Xu Y., Weighted approximation of functions on the unit sphere, Constr. Approx. 21 (2005), 1–28,
math.CA/0312525.

[35] Xu Y., Almost everywhere convergebce of orthogonal expansions of several variables, Constr. Approx. 22
(2005), 67–93, math.CA/0312526.

[36] Xu Y., Generalized translation operator and approximation in several variables, J. Comput. Appl. Math.
178 (2005), 489–512, math.CA/0401417.

http://arxiv.org/abs/math.CA/0312525
http://arxiv.org/abs/math.CA/0312526
http://arxiv.org/abs/math.CA/0401417

	1 Introduction
	2 Some facts in Dunkl's theory
	3 The spherical Radon-Dunkl transform
	4 Inversion formulas for R_\kappa by means of spherical Riesz-Dunkl potentials
	5 Inversion formulas for R_\kappa by means of associated wavelets
	References

