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1 Introduction

In this paper, we consider the Dunkl operator Λα, α > −1/2, associated with the reflection
group Z2 on R. The operators were in general dimension introduced by Dunkl in [2] in connection
with a generalization of the classical theory of spherical harmonics; they play a major role in
various fields of mathematics [3, 4, 5] and also in physical applications [6].

The Dunkl analysis with respect to α ≥ −1/2 concerns the Dunkl operator Λα, the Dunkl
transform Fα and the Dunkl convolution ∗α on R. In the limit case (α = −1/2); Λα, Fα and ∗α

agree with the operator d/dx , the Fourier transform and the standard convolution respectively.
First, we study the Dunkl Sonine operator Sα,β, β > α:

Sα,β(f)(x) :=
Γ(β + 1)

Γ(β − α)Γ(α+ 1)

∫ 1

−1
f(xt)(1− t2)β−α−1(1 + t)|t|2α+1dt,

and its dual tSα,β connected with these operators. Next, we establish for them the same results
as those given in [8, 14] for the Radon transform and its dual; and in [9] for the spherical mean
operator and its dual on R. Especially:

– We define and study the complex powers for the Dunkl Laplacian ∆α = Λ2
α.

– We give inversion formulas for Sα,β and tSα,β associated with integro-differential and
integro-differential-difference operators when applied to some Lizorkin spaces of functions
(see [9, 1, 13]).

– We establish a Plancherel formula for the operator tSα,β.

The content of this work is the following. In Section 2, we recall some results about the
Dunkl operators. In particular, we give some properties of the operators Sα,β and tSα,β.

?This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
is available at http://www.emis.de/journals/SIGMA/Dunkl operators.html
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In Section 3, we consider the tempered distribution |x|λ for λ ∈ C\{−(`+ 1), ` ∈ N} defined
by

〈|x|λ, ϕ〉 :=
∫

R
|x|λϕ(x)dx.

Also we study the complex powers of the Dunkl Laplacian (−∆α)λ, for some complex number λ.
In the classical case when α = −1/2, the complex powers of the usual Laplacian are given in [16].

In Section 4, we give the following inversion formulas:

g = Sα,βK1(tSα,β)(g), f = (tSα,β)K2Sα,β(f),

where

K1(f) =
cβ
cα

(−∆α)β−αf, K2(f) =
cβ
cα

(−∆β)β−αf and cα =
1

[2α+1Γ(α+ 1)]2
.

Next, we give the following Plancherel formula for the operator tSα,β:∫
R
|f(x)|2|x|2β+1dx =

∫
R
|K3(tSα,β(f))(y)|2|x|2α+1dy,

where

K3(f) =
√
cβ
cα

(−∆α)(β−α)/2f.

2 The Dunkl intertwining operator and its dual

We consider the Dunkl operator Λα, α ≥ −1/2, associated with the reflection group Z2 on R:

Λαf(x) :=
d

dx
f(x) +

2α+ 1
x

[
f(x)− f(−x)

2

]
. (1)

For α ≥ −1/2 and λ ∈ C, the initial problem:

Λαf(x) = λf(x), f(0) = 1,

has a unique analytic solution Eα(λx) called Dunkl kernel [3, 5] given by

Eα(λx) = =α(λx) +
λx

2(α+ 1)
=α+1(λx),

where

=α(λx) := Γ(α+ 1)
∞∑

n=0

(λx/2)2n

n! Γ(n+ α+ 1)
,

is the modified spherical Bessel function of order α.
Notice that in the case α = −1/2, we have

Λ−1/2 = d/dx and E−1/2(λx) = eλx.

For λ ∈ C and x ∈ R, the Dunkl kernel Eα has the following Bochner-type representation
(see [3, 11]):

Eα(λx) = aα

∫ 1

−1
eλxt

(
1− t2

)α−1/2(1 + t)dt,
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where

aα =
Γ(α+ 1)√
π Γ(α+ 1/2)

,

which can be written as:

Eα(λx) = aα sgn(x) |x|−(2α+1)

∫ |x|

−|x|
eλy

(
x2 − y2

)α−1/2(x+ y)dy, x 6= 0,

Eα(0) = 1.

We notice that, the Dunkl kernel Eα(λx) can be also expanded in a power series [10] in the
form:

Eα(λx) =
∞∑

n=0

(λx)n

bn(α)
, (2)

where

b2n(α) =
22nn!

Γ(α+ 1)
Γ(n+ α+ 1), b2n+1(α) = 2(α+ 1)b2n(α+ 1).

Let α > −1/2 and we define the Dunkl intertwining operator Vα on E(R) (the space of
C∞-functions on R), by

Vα(f)(x) := aα

∫ 1

−1
f(xt)

(
1− t2

)α−1/2(1 + t)dt,

which can be written as:

Vα(f)(x) = aα sgn(x) |x|−(2α+1)

∫ |x|

−|x|
f(y)

(
x2 − y2

)α−1/2(x+ y)dy, x 6= 0,

Vα(f)(0) = f(0).

Remark 1. For α > −1/2, we have

Eα(λ.) = Vα(eλ.), λ ∈ C.

Proposition 1 (see [18], Theorem 6.3). The operator Vα is a topological automorphism
of E(R), and satisfies the transmutation relation:

Λα(Vα(f)) = Vα

(
d

dx
f

)
, f ∈ E(R).

Let α > −1/2 and we define the dual Dunkl intertwining operator tVα on S(R) (the Schwartz
space on R), by

tVα(f)(x) := aα

∫
|y|≥|x|

sgn(y)
(
y2 − x2

)α−1/2(x+ y)f(y)dy,

which can be written as:

tVα(f)(x) = aα sgn(x)|x|2α+1

∫
|t|≥1

sgn(t)
(
t2 − 1

)α−1/2(1 + t)f(xt)dt.
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Proposition 2 (see [19], Theorems 3.2, 3.3).
(i) The operator tVα is a topological automorphism of S(R), and satisfies the transmutation

relation:

tVα(Λαf) =
d

dx
(tVα(f)), f ∈ S(R).

(ii) For all f ∈ E(R) and g ∈ S(R), we have∫
R
Vα(f)(x)g(x)|x|2α+1dx =

∫
R
f(x) tVα(g)(x)dx.

Remark 2 (see [15]).
(i) For α > −1/2 and f ∈ E(R), we can write

Vα(f)(x) = <α(fe)(|x|) +
1
x
<α(Mfo)(|x|),

where

fe(x) =
1
2
(f(x) + f(−x)), fo(x) =

1
2
(f(x)− f(−x)), Mfo(x) = xfo(x),

and <α is the Riemann–Liouville transform (see [17], page 75) given by

<α(fe)(x) := 2aα

∫ 1

0
fe(xt)

(
1− t2

)α−1/2
dt, x ≥ 0.

Thus, we obtain

V −1
α (f)(x) = <−1

α (fe)(|x|) +
1
x
<−1

α (Mfo)(|x|).

Therefore (see also [20], Proposition 2.2), we get

V −1
α (fe)(x) = dα

d

dx

(
d

xdx

)r {
x2r+1

∫ 1

0
fe(xt)

(
1− t2

)r−α−1/2
t2α+1dt

}
,

V −1
α (fo)(x) = dα

(
d

xdx

)r+1 {
x2r+2

∫ 1

0
fo(xt)

(
1− t2

)r−α−1/2
t2α+2dt

}
,

where r = [α+ 1/2] denote the integer part of α+ 1/2, and dα = 2−rπ
Γ(α+1)Γ(r−α+1/2) .

(ii) For α > −1/2 and f ∈ S(R), we can write

tVα(f)(x) = Wα(fe)(|x|) + xWα(M−1fo)(|x|),

where

M−1fo(x) =
1
2x

(f(x)− f(−x)),

and Wα is the Weyl integral transform (see [17, page 85]) given by

Wα(fe)(x) := 2aαx
2α+1

∫ ∞

1
fe(xt)

(
t2 − 1

)α−1/2
tdt, x ≥ 0.

Thus, we obtain

(tVα)−1f(x) = W−1
α (fe)(|x|) + xW−1

α (M−1fo)(|x|).
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The Dunkl kernel gives rise to an integral transform, called Dunkl transform on R, which
was introduced by Dunkl in [4], where already many basic properties were established. Dunkl’s
results were completed and extended later on by de Jeu in [5].

The Dunkl transform of a function f ∈ S(R), is given by

Fα(f)(λ) :=
∫

R
Eα(−iλx)f(x)|x|2α+1dx, λ ∈ R.

We notice that F−1/2 agrees with the Fourier transform F that is given by:

F(f)(λ) :=
∫

R
e−iλxf(x) dx, λ ∈ R.

Proposition 3 (see [5]).
(i) For all f ∈ S(R), we have

Fα(Λαf)(λ) = iλFα(f)(λ), λ ∈ R,

where Λα is the Dunkl operator given by (1).
(ii) Fα possesses on S(R) the following decomposition:

Fα(f) = F ◦ tVα(f), f ∈ S(R).

(iii) Fα is a topological automorphism of S(R), and for f ∈ S(R) we have

f(x) = cα

∫
R
Eα(iλx)Fα(f)(λ)|λ|2α+1dλ,

where

cα =
1

[2α+1Γ(α+ 1)]2
.

(iv) The normalized Dunkl transform
√
cαFα extends uniquely to an isometric isomorphism

of L2(R, |x|2α+1dx) onto itself. In particular,∫
R
|f(x)|2|x|2α+1dx = cα

∫
R
|Fα(f)(λ)|2|λ|2α+1dλ.

For T ∈ S ′(R), we define the Dunkl transform Fα(T ) of T , by

〈Fα(T ), ϕ〉 := 〈T,Fα(ϕ)〉, ϕ ∈ S(R). (3)

Thus the transform Fα extends to a topological automorphism on S ′(R).

In [19], the author defines:

• The Dunkl translation operators τx, x ∈ R, on E(R), by

τxf(y) := (Vα)x ⊗ (Vα)y

[
(Vα)−1(f)(x+ y)

]
, y ∈ R.

These operators satisfy for x, y ∈ R and λ ∈ C the following properties:

Eα(λx)Eα(λy) = τx(Eα(λ.))(y), and
Fα(τxf)(λ) = Ek(iλx)Fα(f)(λ), f ∈ S(R).
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Proposition 4 (see [11]). If f ∈ C(R) (the space of continuous functions on R) and x, y ∈ R
such that (x, y) 6= (0, 0), then

τxf(y) = aα

∫ π

0

[
fe((x, y)θ) + fo((x, y)θ)

x+ y

(x, y)θ

]
[1− sgn(xy) cos θ] sin2α θdθ,

fe(z) = 1
2(f(z) + f(−z)), fo(z) = 1

2(f(z)− f(−z)),

(x, y)θ =
√
x2 + y2 − 2|xy| cos θ.

• The Dunkl convolution product ∗α of two functions f and g in S(R), by

f ∗α g(x) :=
∫

R
τxf(−y)g(y)|y|2α+1dy, x ∈ R.

This convolution is associative, commutative in S(R) and satisfies (see [19, Theorem 7.2]):

Fα(f ∗α g) = Fα(f)Fα(g).

For T ∈ S ′(R) and f ∈ S(R), we define the Dunkl convolution product T ∗α f , by

T ∗α f(x) := 〈T (y), τxf(−y)〉, x ∈ R. (4)

Note that ∗−1/2 agrees with the standard convolution ∗:

T ∗ f(x) := 〈T (y), f(x− y)〉.

3 The Dunkl Sonine transform

In this section we study the Dunkl Sonine transform, which also studied by Y. Xu on polynomials
in [20]. For thus we consider the following identity, which is a consequence of Xu’s result when
we extend the result of Lemma 2.1 on E(R).

Proposition 5. Let α, β ∈ ]−1/2,∞[, such that β > α. Then

Eβ(λx) = aα,β

∫ 1

−1
Eα(λxt)

(
1− t2

)β−α−1(1 + t)|t|2α+1dt, (5)

where

aα,β =
Γ(β + 1)

Γ(β − α)Γ(α+ 1)
.

Proof. From (2), we have∫ 1

−1
Eα(λxt)

(
1− t2

)β−α−1(1 + t)|t|2α+1dt =
∞∑

n=0

(λx)n

bn(α)
In(α, β),

where

In(α, β) =
∫ 1

−1
tn

(
1− t2

)β−α−1(1 + t)|t|2α+1dt,

or

I2n(α, β) = 2
∫ 1

0

(
1− t2

)β−α−1
t2n+2α+1dt =

∫ 1

0
(1− y)β−α−1yn+αdy
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=
Γ(β − α)Γ(n+ α+ 1)

Γ(n+ β + 1)
,

and

I2n+1(α, β) = 2
∫ 1

0

(
1− t2

)β−α−1
t2n+2α+3dt = I2n(α+ 1, β + 1).

Thus ∫ 1

−1
Eα(λxt)

(
1− t2

)β−α−1(1 + t)|t|2α+1dt =
Γ(β − α)Γ(α+ 1)

Γ(β + 1)
Eβ(λx),

which gives the desired result. �

Remark 3. We can write the formula (5) by the following

Eβ(λx) = aα,β sgn(x) |x|−(2β+1)

∫ |x|

−|x|
Eα(λy)

(
x2 − y2

)β−α−1(x+ y)|y|2α+1dy, x 6= 0.

Definition 1. Let α, β ∈ ]−1/2,∞[, such that β > α. We define the Dunkl Sonine trans-
form Sα,β on E(R), by

Sα,β(f)(x) := aα,β

∫ 1

−1
f(xt)

(
1− t2

)β−α−1(1 + t)|t|2α+1dt,

which can be written as:

Sα,β(f)(x) = aα,β sgn(x) |x|−(2β+1)

∫ |x|

−|x|
f(y)

(
x2 − y2

)β−α−1(x+ y)|y|2α+1dy, x 6= 0,

Sα,β(f)(0) = f(0).

Remark 4. For α, β ∈ ]−1/2,∞[, such that β > α, we have

Eβ(λ.) = Sα,β(Eα(λ.)), λ ∈ C. (6)

Definition 2. Let α, β ∈ ]−1/2,∞[, such that β > α. We define the dual Dunkl Sonine
transform tSα,β on S(R), by

tSα,β(f)(x) := aα,β

∫
|y|≥|x|

sgn(y)
(
y2 − x2

)β−α−1(x+ y)f(y)dy,

which can be written as:

tSα,β(f)(x) = aα,β sgn(x)|x|2(β−α)

∫
|t|≥1

sgn(t)
(
t2 − 1

)β−α−1(t+ 1)f(xt)dt.

Proposition 6.
(i) For all f ∈ E(R) and g ∈ S(R), we have∫

R
Sα,β(f)(x)g(x)|x|2β+1dx =

∫
R
f(x) tSα,β(g)(x)|x|2α+1dx.

(ii) Fβ possesses on S(R) the following decomposition:

Fβ(f) = Fα ◦ tSα,β(f), f ∈ S(R).
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Proof. Part (i) follows from Definition 1 by Fubini’s theorem. Then part (ii) follows from (i)
and (6) by taking f = Eα(−iλ.). �

In [20, Lemma 2.1] Y. Xu proves the identity Sα,β = Vβ ◦ V −1
α on polynomials. As the

intertwiner is a homeomorphism on E(R) and polynomials are dense in E(R), this gives the
identity also on E(R). In the following we give a second method to prove this identity.

Theorem 1.
(i) The operator tSα,β is a topological automorphism of S(R), and satisfies the following

relations:

tSα,β(f) = (tVα)−1 ◦ tVβ(f), f ∈ S(R),
tSα,β(Λβf) = Λα(tSα,β(f)), f ∈ S(R).

(ii) The operator Sα,β is a topological automorphism of E(R), and satisfies the following
relations:

Sα,β(f) = Vβ ◦ V −1
α (f), f ∈ E(R),

Λβ(Sα,β(f)) = Sα,β(Λαf), f ∈ E(R).

Proof. (i) From Proposition 6 (ii), we have

tSα,β(f) = (Fα)−1 ◦ Fβ(f). (7)

Using Proposition 3 (ii), we obtain

tSα,β(f) = (tVα)−1 ◦ tVβ(f), f ∈ S(R). (8)

Thus from Proposition 2 (i),

tSα,β(Λβf) = (tVα)−1 ◦ tVβ(Λβf) = (tVα)−1

(
d

dx
tVβ(f)

)
.

Using the fact that

tVα(Λαf) =
d

dx
(tVα(f)) ⇐⇒ Λα(tVα)−1(f) = (tVα)−1

(
d

dx
f

)
,

we obtain

tSα,β(Λβf) = Λα(tVα)−1( tVβ(f)) = Λα(tSα,β(f)).

(ii) From Proposition 2 (ii), we have∫
R
f(x) tVβ(g)(x)dx =

∫
R
Vβ(f)(x)g(x)|x|2β+1dx.

On other hand, from (8), Proposition 2 (ii) and Proposition 6 (i) we have∫
R
f(x) tVβ(g)(x)dx =

∫
R
f(x) tVα ◦ tSα,β(g)(x)dx =

∫
R
Vα(f)(x) tSα,β(g)(x)|x|2α+1dx

=
∫

R
Sα,β ◦ Vα(f)(x)g(x)|x|2β+1dx.

Then

Sα,β ◦ Vα(f) = Vβ(f).
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Hence from Proposition 1,

Λβ(Sα,β(f)) = ΛβVβ(V −1
α (f)) = Vβ

(
d

dx
V −1

α (f)
)
.

Using the fact that

Λα(Vα(f)) = Vα

(
d

dx
f

)
⇐⇒ V −1

α (Λαf) =
d

dx
V −1

α (f),

we obtain

Λβ(Sα,β(f)) = Vβ ◦ V −1
α (Λαf) = Sα,β(Λαf),

which completes the proof of the theorem. �

4 Complex powers of ∆α

For λ ∈ C, Re(λ) > −1, we denote by |x|λ the tempered distribution defined by

〈|x|λ, ϕ〉 :=
∫

R
|x|λϕ(x)dx, ϕ ∈ S(R). (9)

We write

〈|x|λ, ϕ〉 =
∫ ∞

0
xλ[ϕ(x) + ϕ(−x)]dx, ϕ ∈ S(R),

then from [1], we obtain the following result.

Lemma 1. Let ϕ ∈ S(R). The mapping g : λ → 〈|x|λ, ϕ〉 is complex-valued function and has
an analytic extension to C\{−(1 + 2`), ` ∈ N}, with simple poles −(2`+ 1), ` ∈ N and

Res(g,−1− 2`) = 2
ϕ(2`)(0)
(2`)!

.

Proposition 7. Let ϕ ∈ S(R).
(i) The function λ → 〈|x|λ+2α+1, ϕ〉 is analytic on C\{−(2α + 2` + 2), ` ∈ N}, with simple

poles −(2α+ 2`+ 2), ` ∈ N.

(ii) The function λ→ 22α+λ+2Γ(α+1)Γ( 2α+λ+2
2

)

Γ(−λ/2) 〈|x|−(λ+1), ϕ〉 is analytic on C\{−(2α+ 2`+ 2),
` ∈ N}, with simple poles −(2α+ 2`+ 2), ` ∈ N.

(iii) For λ ∈ C\{−(2α+ 2`+ 2), ` ∈ N} we have

Fα

(
|x|λ+2α+1

)
=

22α+λ+2Γ(α+ 1)Γ(2α+λ+2
2 )

Γ(−λ/2)
|x|−(λ+1), in S ′-sense.

(iv) For λ ∈ C\{−(2α+ 2`+ 2), ` ∈ N} we have

|x|λ+2α+1 =
2λ Γ(2α+λ+2

2 )
Γ(α+ 1)Γ(−λ/2)

Fα(|x|−(λ+1)), in S ′-sense.
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Proof. (i) Follows directly from Lemma 1.
(ii) From [7, pages 2 and 8] the function λ → Γ(2α+λ+2

2 ) has an analytic extension to
C\{−(2α+2`+2), ` ∈ N}, with simple poles −(2α+2`+2), ` ∈ N, and the function λ→ 1

Γ(−λ/2)
has zeros 2`, ` ∈ N. Thus from Lemma 1 we see that

λ→
22α+λ+2Γ(α+ 1)Γ(2α+λ+2

2 )
Γ(−λ/2)

〈|x|−(λ+1), ϕ〉

is analytic on C\{−(2α+ 2`+ 2), ` ∈ N}, with simple poles −(2α+ 2`+ 2), ` ∈ N.
(iii) Let determine the value of Fα(|x|λ+2α+1) in the S ′-sense. We put ψt(x) := e−tx2

, t > 0.
Then ψt ∈ S(R), and from [12]:

Fα(ψt)(x) = Γ(α+ 1)t−(α+1)e−x2/4t, x ∈ R.

Furthermore, for ϕ ∈ S(R) we have∫
R
Fα(ϕ)(x)ψt(x)|x|2α+1dx = Γ(α+ 1)

∫
R
ϕ(x)t−(α+1)e−x2/4t|x|2α+1dx.

Multiplying both sides by t−λ/2−1 and integrating over (0,∞), we obtain for Re(λ) ∈ ]−(2α +
2), 0[:∫

R
Fα(ϕ)(x)|x|λ+2α+1dx =

22α+λ+2Γ(α+ 1)Γ(2α+λ+2
2 )

Γ(−λ/2)

∫
R
ϕ(x)|x|−(λ+1)dx.

This and from (3) we get for Re(λ) ∈ ]−(2α+ 2), 0[:

Fα(|x|λ+2α+1) =
22α+λ+2Γ(α+ 1)Γ(2α+λ+2

2 )
Γ(−λ/2)

|x|−(λ+1).

The result follows by analytic continuation.
(iv) From (iii) we have

|x|λ+2α+1 =
22α+λ+2Γ(α+ 1)Γ(2α+λ+2

2 )
Γ(−λ/2)

F−1
α

(
|x|−(λ+1)

)
.

Using the fact that

〈F−1
α

(
|x|−(λ+1)

)
, ϕ〉 = 〈|x|−(λ+1),F−1

α (ϕ)〉, ϕ ∈ S(R).

By applying (9) and Proposition 3 (iii), we obtain

〈F−1
α (|x|−(λ+1)), ϕ〉 = cα

∫
R
|x|−(λ+1)Fα(ϕ)(−x)dx, ϕ ∈ S(R).

Then

F−1
α

(
|x|−(λ+1)

)
= cαFα

(
|x|−(λ+1)

)
,

which gives the result. �

Definition 3. For λ ∈ C\{−(α+`+1), ` ∈ N}, the complex powers of the Dunkl Laplacian ∆α

are defined for f ∈ S(R) by

(−∆α)λf(x) :=
22λΓ(α+ λ+ 1)
Γ(α+ 1)Γ(−λ)

|x|−(2λ+1) ∗α f(x),

where ∗α is the Dunkl convolution product given by (4).
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In the next part of this section we use Definition 3 and Proposition 7 (iv) to establish the
following result:

Fα

(
(−∆α)λf

)
(x) = |x|2λFα(f)(x).

Proposition 8. For λ ∈ C\{−(α+ `+ 1), ` ∈ N} and f ∈ S(R),

(−∆α)λf(x) = bα(λ)
∫

R

[∫ π

0

(1 + sgn(xy) cos θ)

(x, y)2(λ+α+1)
θ

sin2α θdθ

]
f(y)|y|2α+1dy,

where

bα(λ) =
22λΓ(α+ λ+ 1)√
π Γ(α+ 1/2)Γ(−λ)

, (x, y)θ =
√
x2 + y2 − 2|xy| cos θ.

Proof. From Definition 3, (4) and (9), we have

(−∆α)λf(x) =
22λΓ(α+ λ+ 1)
Γ(α+ 1)Γ(−λ)

〈|y|−(2λ+1), τxf(−y)〉

=
22λΓ(α+ λ+ 1)
Γ(α+ 1)Γ(−λ)

∫
R
|y|−2(λ+α+1)τxf(−y)|y|2α+1dy.

So

(−∆α)λf(x) =
∫

R
τx(|y|−2(λ+α+1))(−y)f(y)|y|2α+1dy.

Then the result follows from Proposition 4. �

Note 1. We denote by
• Ψ the subspace of S(R) consisting of functions f , such that

f (k)(0) = 0, ∀ k ∈ N.

• Φα the subspace of S(R) consisting of functions f , such that∫
R
f(y) yk|y|2α+1dy = 0, ∀ k ∈ N.

The spaces Ψ and Φ−1/2 are well-known in the literature as Lizorkin spaces (see [1, 9, 13]).

Lemma 2 (see [1]). The multiplication operator Mλ : f → |x|λf , λ ∈ C, is a topological
automorphism of Ψ. Its inverse operator is (Mλ)−1 = M−λ.

Theorem 2.
(i) The Dunkl transform Fα is a topological isomorphism from Φα onto Ψ.
(ii) The operator tSα,β is a topological isomorphism from Φβ onto Φα.
(iii) For λ ∈ C\{−(α+ `+ 1), ` ∈ N} and f ∈ Φα , the function (−∆α)λf belongs to ∈ Φα,

and

Fα((−∆α)λf)(x) = |x|2λFα(f)(x). (10)
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Proof. (i) Let f ∈ Φα, then

(Fα(f))(k)(0) = (−i)k k!
bk(α)

∫
R
f(x)xk|x|2α+1dy = 0, ∀ k ∈ N.

Hence Fα(f) ∈ Ψ.
Conversely, let g ∈ Ψ. Since Fα is a topological automorphism of S(R). There exists

f ∈ S(R), such that Fα(f) = g. Thus

g(k)(0) = (−i)k k!
bk(α)

∫
R
f(x)xk|x|2α+1dy = 0, ∀ k ∈ N.

So f ∈ Φα and Fα(f) = g.
(ii) follows directly from (i) and (7).
(iii) Similarly to the standard convolution if f ∈ S(R) and S ∈ S ′(R), then S ∗α f ∈ E(R)

and T|x|2α+1 S∗αf ∈ S ′(R). Moreover

Fα(T|x|2α+1 S∗αf ) = Fα(f)Fα(S).

Let f ∈ Φα and λ ∈ C\{−(α + ` + 1), ` ∈ N}. Consequently, from Definition 3, Proposi-
tion 7 (iv) and (9) we have

Fα(T|x|2α+1(−∆α)λf ) = |x|2λ+2α+1Fα(f) = T|x|2λ+2α+1Fα(f). (11)

On the other hand from (3),

Fα(T|x|2α+1(−∆α)λf ) = T|x|2α+1Fα((−∆α)λf). (12)

From (11) and (12), we obtain

Fα((−∆α)λf) = |x|2λFα(f).

Then by Lemma 2 and (i) we deduce that (−∆α)λf ∈ Φα. �

5 Inversion formulas for Sα,β and tSα,β

In this section, we establish inversion formulas for the Dunkl Sonine transform and its dual.

Definition 4. We define the operators K1, K2 and K3, by

K1(f) :=
cβ
cα
F−1

α

(
|λ|2(β−α)Fα(f)

)
=
cβ
cα

(−∆α)β−αf, f ∈ Φα,

K2(f) :=
cβ
cα
F−1

β

(
|λ|2(β−α)Fβ(f)

)
=
cβ
cα

(−∆β)β−αf, f ∈ Φβ ,

K3(f) :=
√
cβ
cα
F−1

α

(
|λ|β−αFα(f)

)
=

√
cβ
cα

(−∆α)(β−α)/2f, f ∈ Φα.

Lemma 3. For all g ∈ Φβ, we have

K1(tSα,β)(g) = (tSα,β)K2(g). (13)

Proof. Let g ∈ Φβ . Using Proposition 6 (ii),

K1(tSα,β)(g) =
cβ
cα
F−1

α

(
|λ|2(β−α)Fβ(g)

)
= (tSα,β)K2(g). �
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Theorem 3.
(i) Inversion formulas: For all f ∈ Φα and g ∈ Φβ, we have the inversions formulas:

(a) g = Sα,βK1(tSα,β)(g), (b) f = (tSα,β)K2Sα,β(f).

(ii) Plancherel formula: For all f ∈ Φβ we have∫
R
|f(x)|2|x|2β+1dx =

∫
R
|K3(tSα,β(f))(x)|2|x|2α+1dx.

Proof. (i) Let g ∈ Φβ . From Proposition 3 (iii), (6) and Proposition 6 (ii), we obtain

g = cβ

∫
R
Sα,β(Eα(iλ.))Fβ(g)(λ)|λ|2β+1dλ

= cβ Sα,β

[∫
R
Eα(iλ.)Fα ◦ tSα,β(g)(λ)|λ|2β+1dλ

]
=
cβ
cα
Sα,β

[
F−1

α (|λ|2(β−α)Fα ◦ tSα,β(g))
]
.

Thus

g = Sα,βK1(tSα,β)(g), g ∈ Φβ.

From the previous relation and (13), we deduce the relation:

f = (tSα,β)K2Sα,β(f), f ∈ Φα.

(ii) Let f ∈ Φβ. From Proposition 3 (iv) and Proposition 6 (ii), we deduce that∫
R
|f(x)|2|x|2β+1dx = cβ

∫
R

∣∣|λ|β−αFα(tSα,β(f))(λ)
∣∣2|λ|2α+1dλ.

Thus we obtain∫
R
|f(x)|2|x|2β+1dx = cα

∫
R

∣∣Fα

(
K3(tSα,β(f))

)
(λ)

∣∣2|λ|2α+1dλ.

Then the result follows from this identity by applying Proposition 3 (iv). �

Remark 5. Let f ∈ Φα and g ∈ Φβ. By writing (a) and (b) respectively for the functions
Sα,β(f) and tSα,β(g), we obtain

(c) f = K1(tSα,β)Sα,β(f), (d) g = K2Sα,β(tSα,β)(g).
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