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1 Introduction

We consider the differential-difference operators Tj , j = 1, 2, . . . , d, on Rd associated to a root
system R and a multiplicity function k, introduced by C.F. Dunkl in [3] and called the Dunkl ope-
rators in the literature. These operators are very important in pure mathematics and in physics.
They provide a useful tool in the study of special functions related to root systems [4, 6, 2].
Moreover the commutative algebra generated by these operators has been used in the study of
certain exactly solvable models of quantum mechanics, namely the Calogero–Sutherland–Moser
models, which deal with systems of identical particles in a one dimensional space (see [8, 11, 12]).

C.F. Dunkl proved in [4] that there exists a unique isomorphism Vk from the space of homo-
geneous polynomials Pn on Rd of degree n onto itself satisfying the transmutation relations

TjVk = Vk
∂

∂xj
, j = 1, 2, . . . , d, (1.1)

and

Vk(1) = 1. (1.2)

This operator is called the Dunkl intertwining operator. It has been extended to an isomorphism
from E(Rd) (the space of C∞-functions on Rd) onto itself satisfying the relations (1.1) and (1.2)
(see [15]).

The operator Vk possesses the integral representation

∀ x ∈ Rd, Vk(f)(x) =
∫

Rd

f(y)dµx(y), f ∈ E(Rd), (1.3)

where µx is a probability measure on Rd with support in the closed ball B(0, ‖x‖) of center 0
and radius ‖x‖ (see [14, 15]).

?This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
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We have shown in [15] that for each x ∈ Rd, there exists a unique distribution ηx in E ′(Rd)
(the space of distributions on Rd of compact support) with support in B(0, ‖x‖) such that

V −1
k (f)(x) = 〈ηx, f〉, f ∈ E(Rd). (1.4)

We have studied also in [15] the transposed operator tVk of the operator Vk, satisfying for f
in S(Rd) (the space of C∞-functions on Rd which are rapidly decreasing together with their
derivatives) and g in E(Rd), the relation∫

Rd

tVk(f)(y)g(y)dy =
∫

Rd

Vk(g)(x)f(x)ωk(x)dx,

where ωk is a positive weight function on Rd which will be defined in the following section. It
has the integral representation

∀ y ∈ Rd, tVk(f)(y) =
∫

Rd

f(x)dνy(x), (1.5)

where νy is a positive measure on Rd with support in the set {x ∈ Rd; ‖x‖ ≥ ‖y‖}. This
operator is called the dual Dunkl intertwining operator.

We have proved in [15] that the operator tVk is an isomorphism from D(Rd) (the space of C∞-
functions on Rd with compact support) (resp. S(Rd)) onto itself, satisfying the transmutation
relations

∀ y ∈ Rd, tVk(Tjf)(y) =
∂

∂yj
tVk(f)(y), j = 1, 2, . . . , d.

Moreover for each y ∈ Rd, there exists a unique distribution Zy in S ′(Rd) (the space of tempered
distributions on Rd) with support in the set {x ∈ Rd; ‖x‖ ≥ ‖y‖} such that

tV −1
k (f)(y) = 〈Zy, f〉, f ∈ S(Rd). (1.6)

Using the operator Vk, C.F. Dunkl has defined in [5] the Dunkl kernel K by

∀ x ∈ Rd, ∀ z ∈ Cd, K(x,−iz) = Vk(e−i〈·,z〉)(x). (1.7)

Using this kernel C.F. Dunkl has introduced in [5] a Fourier transform FD called the Dunkl
transform.

In this paper we establish the following inversion formulas for the operators Vk and tVk:

∀ x ∈ Rd, V −1
k (f)(x) = P tVk(f)(x), f ∈ S(Rd), (1.8)

∀ x ∈ Rd, tV −1
k (f)(x) = Vk(P (f))(x), f ∈ S(Rd),

where P is a pseudo-differential operator on Rd.
When the multiplicity function takes integer values, the formula (1.8) can also be written in

the form

∀ x ∈ Rd, V −1
k (f)(x) = tVk(Q(f))(x), f ∈ S(Rd),

where Q is a differential-difference operator.
Also we give another expression of the operator tV −1

k on the space E ′(Rd). From these
relations we deduce the expressions of the representing distributions ηx and Zx of the inverse
operators V −1

k and tV −1
k by using the representing measures µx and νx of Vk and tVk. They are

given by the following formulas

∀ x ∈ Rd, ηx = tQ(νx),

∀ x ∈ Rd, Zx = tP (µx),

where tP and tQ are the transposed operators of P and Q respectively.
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The contents of the paper are as follows. In Section 2 we recall some basic facts from Dunkl’s
theory, and describe the Dunkl operators and the Dunkl kernel. We define in Section 3 the
Dunkl transform introduced in [5] by C.F. Dunkl, and we give the main theorems proved for
this transform, which will be used in this paper. We study in Section 4 the Dunkl convolution
product and the Dunkl transform of distributions which will be useful in the sequel, and when
the multiplicity function takes integer values, we give another proof of the geometrical form of
Paley–Wiener–Schwartz theorem for the Dunkl transform. We prove in Section 5 some inversion
formulas for the Dunkl intertwining operator Vk and its dual tVk on spaces of functions and
distributions. Section 6 is devoted to proving under the condition that the multiplicity function
takes integer values an inversion formula for the Dunkl intertwining operator Vk, and we deduce
the expression of the representing distributions of the inverse operators V −1

k and tV −1
k . In

Section 7 we give some applications of the preceding inversion formulas.

2 The eigenfunction of the Dunkl operators

In this section we collect some notations and results on the Dunkl operators and the Dunkl
kernel (see [3, 4, 5, 7, 9, 10]).

2.1 Reflection groups, root systems and multiplicity functions

We consider Rd with the Euclidean scalar product 〈·, ·〉 and ‖x‖ =
√
〈x, x〉. On Cd, ‖ · ‖ denotes

also the standard Hermitian norm, while 〈z, w〉 =
∑d

j=1 zjwj .
For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal to α, i.e.

σα(x) = x−
(

2〈α, x〉
‖α‖2

)
α.

A finite set R ⊂ Rd\{0} is called a root system if R ∩ Rα = {±α} and σαR = R for all α ∈ R.
For a given root system R the reflections σα, α ∈ R, generate a finite group W ⊂ O(d), the
reflection group associated with R. All reflections in W correspond to suitable pairs of roots.
For a given β ∈ Rd\∪α∈RHα, we fix the positive subsystem R+ = {α ∈ R; 〈α, β〉 > 0}, then for
each α ∈ R either α ∈ R+ or −α ∈ R+.

A function k : R → C on a root system R is called a multiplicity function if it is invariant
under the action of the associated reflection group W . If one regards k as a function on the
corresponding reflections, this means that k is constant on the conjugacy classes of reflections
in W . For abbreviation, we introduce the index

γ = γ(R) =
∑
α∈R+

k(α).

Moreover, let ωk denotes the weight function

ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α),

which is W -invariant and homogeneous of degree 2γ.
For d = 1 and W = Z2, the multiplicity function k is a single parameter denoted γ and

∀ x ∈ R, ωk(x) = |x|2γ .

We introduce the Mehta-type constant

ck =
(∫

Rd

e−‖x‖
2
ωk(x)dx

)−1

,

which is known for all Coxeter groups W (see [3, 6]).
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2.2 The Dunkl operators and the Dunkl kernel

The Dunkl operators Tj , j = 1, . . . , d, on Rd, associated with the finite reflection group W and
the multiplicity function k, are given for a function f of class C1 on Rd by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
.

In the case k ≡ 0, the Tj , j = 1, 2, . . . , d, reduce to the corresponding partial derivatives. In this
paper, we will assume throughout that k ≥ 0 and γ > 0.

For f of class C1 on Rd with compact support and g of class C1 on Rd we have∫
Rd

Tjf(x)g(x)ωk(x)dx = −
∫

Rd

f(x)Tjg(x)ωk(x)dx, j = 1, 2, . . . , d. (2.1)

For y ∈ Rd, the system

Tju(x, y) = yju(x, y), j = 1, 2, . . . , d,
u(0, y) = 1, (2.2)

admits a unique analytic solution on Rd, denoted by K(x, y) and called the Dunkl kernel.
This kernel has a unique holomorphic extension to Cd × Cd.

Example 2.1. From [5], if d = 1 and W = Z2, the Dunkl kernel is given by

K(z, t) = jγ−1/2(izt) +
zt

2γ + 1
jγ+1/2(izt), z, t ∈ C,

where for α ≥ −1/2, jα is the normalized Bessel function defined by

jα(u) = 2αΓ(α+ 1)
Jα(u)
uα

= Γ(α+ 1)
∞∑
n=0

(−1)n(u/2)2n

n!Γ(n+ α+ 1)
, u ∈ C,

with Jα being the Bessel function of first kind and index α (see [16]).

The Dunkl kernel possesses the following properties.

(i) For z, t ∈ Cd, we have K(z, t) = K(t, z), K(z, 0) = 1, and K(λz, t) = K(z, λt) for all
λ ∈ C.

(ii) For all ν ∈ Zd+, x ∈ Rd, and z ∈ Cd we have

|Dν
zK(x, z)| ≤ ‖x‖|ν| exp

[
max
w∈W

〈wx,Re z〉
]
. (2.3)

with

Dν
z =

∂|ν|

∂zν11 · · · ∂zνd
d

and |ν| = ν1 + · · ·+ νd.

In particular

|Dν
zK(x, z)| ≤ ‖x‖|ν| exp[‖x‖‖Re z‖]], (2.4)

|K(x, z)| ≤ exp[‖x‖‖Re z‖],

and for all x, y ∈ Rd

|K(ix, y)| ≤ 1, (2.5)
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(iii) For all x, y ∈ Rd and w ∈W we have

K(−ix, y) = K(ix, y) and K(wx,wy) = K(x, y).

(iv) The function K(x, z) admits for all x ∈ Rd and z ∈ Cd the following Laplace type integral
representation

K(x, z) =
∫

Rd

e〈y,z〉dµx(y), (2.6)

where µx is the measure given by the relation (1.3) (see [14]).

Remark 2.1. When d = 1 and W = Z2, the relation (2.6) is of the form

K(x, z) =
Γ(γ + 1/2)√

πΓ(γ)
|x|−2γ

∫ |x|

−|x|
(|x| − y)γ−1(|x|+ y)γeyzdy.

Then in this case the measure µx is given for all x ∈ R\{0} by dµx(y) = K(x, y)dy with

K(x, y) =
Γ(γ + 1/2)√

πΓ(γ)
|x|−2γ(|x| − y)γ−1(|x|+ y)γ1]−|x|,|x|[(y),

where 1]−|x|,|x|[ is the characteristic function of the interval ]−|x|, |x|[.

3 The Dunkl transform

In this section we define the Dunkl transform and we give the main results satisfied by this
transform which will be used in the following sections (see [5, 9, 10]).
Notation. We denote by H(Cd) the space of entire functions on Cd which are rapidly decreasing
and of exponential type. We equip this space with the classical topology.

The Dunkl transform of a function f in S(Rd) is given by

∀ y ∈ Rd, FD(f)(y) =
∫

Rd

f(x)K(x,−iy)ωk(x)dx. (3.1)

This transform satisfies the relation

FD(f) = F ◦ tVk(f), f ∈ S(Rd), (3.2)

where F is the classical Fourier transform on Rd given by

∀ y ∈ Rd, F(f)(y) =
∫

Rd

f(x)e−i〈x,y〉dx, f ∈ S(Rd).

The following theorems are proved in [9, 10].

Theorem 3.1. The transform FD is a topological isomorphism

i) from D(Rd) onto H(Cd),

ii) from S(Rd) onto itself.

The inverse transform is given by

∀ x ∈ Rd, F−1
D (h)(x) =

c2k
22γ+d

∫
Rd

h(y)K(x, iy)ωk(y)dy. (3.3)
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Remark 3.1. Another proof of Theorem 3.1 is given in [17].

When the multiplicity function satisfies k(α) ∈ N for all α ∈ R+, M.F.E. de Jeu has proved
in [10] the following geometrical form of Paley–Wiener theorem for functions.

Theorem 3.2. Let E be a W -invariant compact convex set of Rd and f an entire function
on Cd. Then f is the Dunkl transform of a function in D(Rd) with support in E, if and only if
for all q ∈ N there exists a positive constant Cq such that

∀ z ∈ Cd, |f(z)| ≤ Cq(1 + ||z||)−qeIE(Im z),

where IE is the gauge associated to the polar of E, given by

∀ y ∈ Rd, IE(y) = sup
x∈E

〈x, y〉. (3.4)

4 The Dunkl convolution product and the Dunkl transform
of distributions

4.1 The Dunkl translation operators and the Dunkl convolution product
of functions

The definitions and properties of the Dunkl translation operators and the Dunkl convolution
product of functions presented in this subsection are given in the seventh section of [17, pa-
ges 33–37].

The Dunkl translation operators τx, x ∈ Rd, are defined on E(Rd) by

∀ y ∈ Rd, τxf(y) = (Vk)x(Vk)y[V −1
k (f)(x+ y)]. (4.1)

For f in S(Rd) the function τxf can also be written in the form

∀ y ∈ Rd, τxf(y) = (Vk)x(tV −1
k )y[tVk(f)(x+ y)]. (4.2)

Using properties of the operators Vk and tVk we deduce that for f in D(Rd) (resp. S(Rd))
and x ∈ Rd, the function y → τxf(y) belongs to D(Rd) (resp. S(Rd)) and we have

∀ t ∈ Rd, FD(τxf)(t) = K(ix, t)FD(f)(t). (4.3)

The Dunkl convolution product of f and g in D(Rd) is the function f ∗D g defined by

∀ x ∈ Rd, f ∗D g(x) =
∫

Rd

τxf(−y)g(y)ωk(y)dy.

For f , g in D(Rd) (resp. S(Rd)) the function f ∗D g belongs to D(Rd) (resp. S(Rd)) and we have

∀ t ∈ Rd, FD(f ∗D g)(t) = FD(f)(t)FD(g)(t).

4.2 The Dunkl convolution product of tempered distributions

Definition 4.1. Let S be in S ′(Rd) and ϕ in S(Rd). The Dunkl convolution product of S and ϕ
is the function S ∗D ϕ defined by

∀ x ∈ Rd, S ∗D ϕ(x) = 〈Sy, τxϕ(−y)〉.
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Proposition 4.1. For S in S ′(Rd) and ϕ in S(Rd) the function S ∗D ϕ belongs to E(Rd) and
we have

Tµ(S ∗D ϕ) = S ∗D (Tµ(ϕ)),

where

Tµ = Tµ1
1 ◦ Tµ2

2 ◦ · · · ◦ Tµd
d with µ = (µ1, µ2, . . . , µd) ∈ Nd.

Proof. We remark first that the topology of S(Rd) is also generated by the seminorms

Qk,l(ψ) = sup
|µ|≤k
x∈Rd

(
1 + ||x||2

)l|Tµψ(x)|, k, l ∈ N.

i) Let x0 ∈ Rd. We prove first that S ∗D ϕ is continuous at x0. We have

∀ x ∈ Rd, S ∗D ϕ(x)− S ∗D ϕ(x0) = 〈Sy, (τxϕ− τx0ϕ)(−y)〉.

We must prove that (τxϕ− τx0ϕ) converges to zero in S(Rd) when x tends to x0.
Let k, ` ∈ N and µ ∈ Nd such that |µ| ≤ k. From (4.3), Theorem 3.1 and the rela-

tions (2.1), (2.2) we have(
1 + ‖y‖2

)`
Tµ(τxϕ− τx0ϕ)(−y)

=
i|µ|c2k
22γ+d

∫
Rd

(1 + ‖λ‖2)pK(iλ,−y)(I −∆k)`
[
λµ(K(−ix, λ)

−K(−ix0, λ))FD(ϕ)(λ)
] ωk(λ)
(1 + ‖λ‖2)p

dλ,

with λµ = λµ1
1 λµ2

2 · · ·λµd
d , ∆k =

∑d
j=1 T

2
j the Dunkl Laplacian and p ∈ N such that p > γ+ d

2 +1.
Using (2.4) and (2.5) we deduce that

Qk,`(τxϕ− τx0ϕ) = sup
|µ|≤k
y∈Rd

(1 + ‖y‖)`|Tµ(τxϕ− τx0ϕ)(−y)| → 0 as x→ x0.

Then the function S ∗D ϕ is continuous at x0, and thus it is continuous on Rd.
Now we will prove that S∗Dϕ admits a partial derivative on Rd with respect to the variable xj .

Let h ∈ R\{0}. We consider the function fh defined on Rd by

fh(y) =
1
h

(
τ(x1,...,xj+h,...,xd)ϕ(−y)− τ(x1,...,xj ,...,xd)ϕ(−y)

)
− ∂

∂xj
τxϕ(−y).

Using the formula

∀ y ∈ Rd, fh(y) =
1
h

∫ xj+h

xj

(∫ uj

xj

∂2

∂t2j
τ(x1,...,tj ,...,xd)ϕ(−y)dtj

)
duj ,

we obtain for all k, ` ∈ N and µ ∈ Nd such that |µ| ≤ k:

∀ y ∈ Rd, (1 + ‖y‖2)`Tµfh(y)

=
1
h

∫ xj+h

xj

(∫ uj

xj

(
1 + ‖y‖2

)`
Tµ

∂2

∂t2j
τ(x1,...,tj ,xd)ϕ(−y)dtj

)
duj . (4.4)
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By applying the preceding method to the function

(
1 + ‖y‖2

)`
Tµ

∂2

∂t2j
τ(x1,...,tj ,...,xd)ϕ(−y),

we deduce from the relation (4.4) that

Qk,`(fh) = sup
|µ|≤k
y∈Rd

(
1 + ‖y‖2

)`|Tµfh(y)| → 0 as h→ 0.

Thus the function S ∗D ϕ(x) admits a partial derivative at x0 with respect to xj and we have

∂

∂xj
S ∗D ϕ(x0) = 〈Sy,

∂

∂xj
τx0ϕ(−y)〉.

These results is true on Rd. Moreover the partial derivatives are continuous on Rd. By proceeding
in a similar way for partial derivatives of all order with respect to all variables, we deduce that
S ∗D ϕ belongs to E(Rd).

ii) From the i) we have

∀ x ∈ Rd,
∂

∂xj
S ∗D ϕ(x) = 〈Sy,

∂

∂xj
τxϕ(−y)〉.

On the other hand using the definition of the Dunkl operator Tj and the relation

Tj(τxϕ(−y)) = τx(Tjϕ)(−y),

we obtain

∀ x ∈ Rd, Tj(S ∗D ϕ)(x) = 〈Sy, τx(Tjϕ)(−y)〉 = S ∗D (Tjϕ)(x).

By iteration we get

∀ x ∈ Rd, Tµ(S ∗D ϕ)(x) = S ∗D (Tµϕ)(x). �

4.3 The Dunkl transform of distributions

Definition 4.2.

i) The Dunkl transform of a distribution S in S ′(Rd) is defined by

〈FD(S), ψ〉 = 〈S,FD(ψ)〉, ψ ∈ S(Rd).

ii) We define the Dunkl transform of a distribution S in E ′(Rd) by

∀ y ∈ Rd, FD(S)(y) = 〈Sx,K(−iy, x)〉. (4.5)

Remark 4.1. When the distribution S in E ′(Rd) is given by the function gωk with g in D(Rd),
and denoted by Tgωk

, the relation (4.5) coincides with (3.1).

Notation. We denote by H(Cd) the space of entire functions on Cd which are slowly increasing
and of exponential type. We equip this space with the classical topology.

The following theorem is given in [17, page 27].
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Theorem 4.1. The transform FD is a topological isomorphism

i) from S ′(Rd) onto itself;

ii) from E ′(Rd) onto H(Cd).

Theorem 4.2. Let S be in S ′(Rd) and ϕ in S(Rd). Then, the distribution on Rd given by
(S ∗D ϕ)ωk belongs to S ′(Rd) and we have

FD(T(S∗Dϕ)ωk
) = FD(ϕ)FD(S). (4.6)

Proof. i) As S belongs to S ′(Rd) then there exists a positive constant C0 and k0, `0 ∈ N such
that

|S ∗D ϕ(x)| = |〈Sy, τxϕ(−y)〉| ≤ C0Qk0,`0(τxϕ). (4.7)

But by using the inequality

∀ x, y ∈ Rd, 1 + ‖x+ y‖2 ≤ 2
(
1 + ‖x‖2

)(
1 + ‖y‖2

)
,

the relations (4.2), (1.3) and the properties of the operator tVk (see Theorem 3.2 of [17]), we
deduce that there exists a positive constant C1 and k, ` ∈ N such that

Q`0,`0(τxϕ) ≤ C1

(
1 + ‖x‖2

)`0Qk,`(ϕ).

Thus from (4.7) we obtain

|S ∗D ϕ(x)| ≤ C
(
1 + ‖x‖2

)`0Qk,`(ϕ), (4.8)

where C is a positive constant. This inequality shows that the distribution on Rd associated
with the function (S ∗D ϕ)ωk belongs to S ′(Rd).

ii) Let ψ be in S(Rd). We shall prove first that

〈T(S∗Dϕ)ωk
, ψ〉 = 〈Š, ϕ ∗D ψ̌〉, (4.9)

where Š is the distribution in S ′(Rd) given by

〈Š, φ〉 = 〈S, φ̌〉,

with

∀ x ∈ Rd, φ̌(x) = φ(−x).

We consider the two sequences {ϕn}n∈N and {ψm}m∈N in D(Rd) which converge respectively
to ϕ and ψ in S(Rd). We have

〈T(S∗Dϕn)ωk
, ψm〉 =

∫
Rd

〈Sy, τxϕn(−y)〉ψm(x)ωk(x)dx,

= 〈Sy,
∫

Rd

ψm(x)τxϕn(−y)ωk(x)dx〉 = 〈Sy,
∫

Rd

ψ̌m(x)τ−xϕn(−y)ωk(x)dx〉.

Thus

〈T(S∗Dϕn)ωk
, ψm〉 = 〈Š, ϕn ∗D ψ̌m〉. (4.10)
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But

〈T(S∗Dϕn)ωk
, ψm〉 − 〈T(S∗Dϕ)ωk

, ψm〉 =
∫

Rd

Š ∗D (ϕn − ϕ)(x)ψ̌m(x)ωk(x)dx.

Thus from (4.8) there exist a positive constant M and k, ` ∈ N such that

|T(S∗Dϕn)ωk
, ψm〉 − 〈T(S∗Dϕ)ωk

, ψm〉| ≤MQk,`(ϕn − ϕ).

Thus

〈T(S∗Dϕn)ωk
, ψm〉 −→

n→+∞
〈T(S∗Dϕ)ωk

, ψm〉. (4.11)

On the other hand we have

〈T(S∗Dϕ)ωk
, ψm〉 −→

m→+∞
〈T(S∗Dϕ)ωk

, ψ〉, (4.12)

and

ϕn ∗D ψ̌m −→
n→+∞
m→+∞

ϕ ∗D ψ̌, (4.13)

the limit is in S(Rd).
We deduce (4.9) from (4.10), (4.11), (4.12) and (4.13).
We prove now the relation (4.6). Using (4.9) we obtain for all ψ in S(Rd)

〈FD(T(S∗Dϕ)ωk
), ψ〉 = 〈T(S∗Dϕ)ωk

,FD(ψ)〉,= 〈Š, ϕ ∗D (FD(ψ))̌〉.

But

ϕ ∗D (FD(ψ))̌ = (FD[FD(ϕ)ψ])̌.

Thus

〈S̆, ϕ ∗D (FD(ψ))̌〉 = 〈S,FD[FD(ϕ)ψ]〉,= 〈FD(ϕ)FD(S), ψ〉.

Then

〈FD(T(S∗Dϕ)ωk
), ψ〉 = 〈FD(ϕ)FD(S), ψ〉.

This completes the proof of (4.6). �

We consider the positive function ϕ in D(Rd) which is radial for d ≥ 2 and even for d = 1,
with support in the closed ball of center 0 and radius 1, satisfying∫

Rd

ϕ(x)ωk(x)dx = 1,

and φ the function on [0,+∞[ given by

ϕ(x) = φ(‖x‖) = φ(r) with r = ‖x‖.

For ε ∈]0, 1], we denote by ϕε the function on Rd defined by

∀ x ∈ Rd, ϕε(x) =
1

ε2γ+d
φ(
‖x‖
ε

). (4.14)

This function satisfies the following properties:
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i) Its support is contained in the closed ball Bε of center 0, and radius ε.

ii) From [13, pages 585–586] we have

∀ y ∈ Rd, FD(ϕε)(y) =
2γ+

d
2

ck
Fγ+ d

2
−1

B (φ)(ε‖y‖), (4.15)

where Fγ+ d
2
−1

B (f)(λ) is the Fourier–Bessel transform given by

∀ λ ∈ R, Fγ+ d
2
−1

B (f)(λ) =
∫ ∞

0
f(r)jγ+ d

2
−1(λr)

r2γ+d−1

2γ+
d
2 Γ
(
γ + d

2

)dr, (4.16)

with jγ+ d
2
−1(λr) the normalized Bessel function.

iii) There exists a positive constant M such that

∀ y ∈ Rd, |FD(ϕε)(y)− 1| ≤ εM‖y‖2. (4.17)

Theorem 4.3. Let S be in S ′(Rd). We have

lim
ε→0

(S ∗D φε)ωk = S, (4.18)

where the limit is in S ′(Rd).

Proof. We deduce (4.18) from (4.6), (4.15), (4.17) and Theorem 4.1. �

Definition 4.3. Let S1 be in S ′(Rd) and S2 in E ′(Rd). The Dunkl convolution product of S1

and S2 is the distribution S1 ∗D S2 on Rd defined by

〈S1 ∗D S2, ψ〉 = 〈S1,x, 〈S2,y, τxψ(y)〉〉, ψ ∈ D(Rd). (4.19)

Remark 4.2. The relation (4.19) can also be written in the form

〈S1 ∗D S2, ψ〉 = 〈S1, Š2 ∗D ψ〉. (4.20)

Theorem 4.4. Let S1 be in S ′(Rd) and S2 in E ′(Rd). Then the distribution S1 ∗D S2 belongs
to S ′(Rd) and we have

FD(S1 ∗D S2) = FD(S2) · FD(S1).

Proof. We deduce the result from (4.20), the relation

T(Š2∗DFD(ψ))ωk
= Š2 ∗D TFD(ψ)ωk

,

and Theorem 4.2. �

4.4 Another proof of the geometrical form
of the Paley–Wiener–Schwartz theorem for the Dunkl transform

In this subsection we suppose that the multiplicity function satisfies k(α) ∈ N\{0} for all α ∈ R+.
The main result is to give another proof of the geometrical form of Paley–Wiener–Schwartz

theorem for the transform FD, given in [17, pages 23–33].
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Theorem 4.5. Let E be a W -invariant compact convex set of Rd and f an entire function
on Cd. Then f is the Dunkl transform of a distribution in E ′(Rd) with support in E if and only
if there exist a positive constant C and N ∈ N such that

∀ z ∈ Cd, |f(z)| ≤ C(1 + ‖z‖2)NeIE(Im z), (4.21)

where IE is the function given by (3.4).

Proof. Necessity condition. We consider a distribution S in E ′(Rd) with support in E.
Let X be in D(Rd) equal to 1 in a neighborhood of E, and θ in E(R) such that

θ(t) =
{

1, if t ≤ 1,
0, if t > 2.

We put η = Im z, z ∈ Cd and we take ε > 0. We denote by ψz the function defined on Rd by

ψz(x) = χ(x)K(−ix, z)|W |−1
∑
w∈W

θ(‖z‖ε(〈wx, η〉 − IE(η))).

This function belongs to D(Rd) and as E is W -invariant, then it is equal to K(−ix, z) in a
neighborhood of E. Thus

∀ z ∈ Cd, FD(S)(z) = 〈Sx, ψz(x)〉.

As S is with compact support, then it is of finite order N . Then there exists a positive cons-
tant C0 such that

∀ z ∈ Cd, |FD(S)(z)| ≤ C0

∑
|p|≤N

sup
x∈Rd

|Dpψz(x)|. (4.22)

Using the Leibniz rule, we obtain

∀ x ∈ Rd, Dpψz(x) =
∑

q+r+s=p

p!
q!r!s!

DqX (x)DrK(−ix, z)

×Ds|W |−1
∑
w∈W

θ(‖z‖ε(〈wx, η〉 − IE(η))). (4.23)

We have

∀ x ∈ Rd, |Dqχ(x)| ≤ const, (4.24)

and if M is the estimate of sup
t∈R

|θ(k)(t)|, k ≤ N , we obtain

∀ x ∈ Rd,

∣∣∣∣∣Ds

(∑
w∈W

θ(‖z‖ε(〈wx, η〉 − IE(η)))

)∣∣∣∣∣ ≤M(‖z‖ε‖η‖)|s|. (4.25)

On the other hand from (2.3) we have

∀ x ∈ Rd, |DrK(−ix, z)| ≤ ‖z‖remaxw∈W 〈wx,η〉. (4.26)

Using inequalities (4.24), (4.25), (4.26) and (4.23) we deduce that there exists a positive cons-
tant C1 such that

∀ x ∈ Rd, |Dpψz(x)| ≤ C1(1 + ‖z‖2)N(1+ε)emaxw∈W 〈wx,η〉.
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From this relation and (4.22) we obtain

∀ z ∈ Cd, |FD(S)(z)| ≤ C2(1 + ‖z‖2)N(1+ε) sup
x∈E

emaxw∈W 〈wx,η〉, (4.27)

where C2 is a positive constant, and the supremum is calculated when ‖z‖ ≥ 1, for

〈wx, η〉 ≤ IE(η) +
2

‖z‖ε
,

because if not we have θ = 0. This inequality implies

sup
x∈E

emaxw∈W 〈wx,η〉 ≤ e2 · eIE(η). (4.28)

From (4.27), (4.28) we deduce that there exists a positive constant C3 independent from ε such
that

∀ z ∈ Cd, ‖z‖ ≥ 1, |FD(S)(z)| ≤ C3(1 + ‖z‖2)N(1+ε)eIE(η).

If we make ε → 0 in this relation we obtain (4.21) for ‖z‖ ≥ 1. But this inequality is also
true (with another constant) for ‖z‖ ≤ 1, because in the set {z ∈ Cd, ‖z‖ ≤ 1} the function
FD(S)(z)e−IE(η) is bounded.

Sufficient condition. Let f be an entire function on Cd satisfying the condition (4.21). It is
clear that the distribution given by the restriction of fωk to Rd belongs to S ′(Rd). Thus from
Theorem 4.1i there exists a distribution S in S ′(Rd) such that

Tfωk
= FD(S). (4.29)

We shall show that the support of S is contained in E. Let ϕε be the function given by the
relation (4.14). We consider the distribution

Tfεωk
= FD(T(S∗Dϕε)ωk

). (4.30)

From Theorem 4.2 and (4.29), (4.30) we deduce that

fε = FD(ϕε)f.

The properties of the function f and (4.15), (4.16) and (4.17) show that the function fε can
be extended to an entire function on Cd which satisfies: for all q ∈ N there exists a positive
constant Cq such that

∀ z ∈ Cd, |fε(z)| ≤ Cq(1 + ‖z‖)−qeIE+Bε (Im z). (4.31)

Then from (4.31), Theorem 3.2 and (4.30), the function (S∗ϕε)ωk belongs to D(Rd) with support
in E +Bε. But from Theorem 4.3, the family (S ∗ϕε)ωk converges to S in S ′(Rd) when ε tends
to zero. Thus for all ε > 0, the support of S is in E +Bε, then it is contained in E. �

Remark 4.3. In the following we give an ameliorated version of the proof of Proposition 6.3
of [17, page 30].

Let E be a W -invariant compact convex set of Rd and x ∈ E. The function f(x, ·) defined
on Cd by

f(x, z) = e
−i
( d∑

j=1
xjzj

)
,
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is entire on Cd and satisfies

∀ z ∈ Cd, |f(x, z)| ≤ eIE(Im z).

Thus from Theorem 4.5 there exists a distribution η̃x in E ′(Rd) with support in E such that

∀ y ∈ Rd, f(x, y) = e−i〈x,y〉 = 〈η̃x,K(−iy, ·)〉.

Applying now the remainder of the proof given in [17, page 32], we deduce that the support
of the representing distribution ηx of the inverse Dunkl intertwining operator V −1

k is contained
in E.

5 Inversion formulas for the Dunkl intertwining operator
and its dual

5.1 The pseudo-differential operators P

Definition 5.1. We define the pseudo-differential operator P on S(Rd) by

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

F−1[ωkF(f)](x). (5.1)

Proposition 5.1. The distribution Tωk
given by the function ωk, is in S ′(Rd) and for all f

in S(Rd) we have

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

F(Tωk
) ∗ f̆(−x).

where ∗ is the classical convolution production of a distribution and a function on Rd.

Proof. It is clear that the distribution Tωk
given by the function ωk belongs to S ′(Rd). On the

other hand from the relation (5.1) we have

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

∫
Rd

F(f(ξ + x))(y)ωk(y)dy.

Thus

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

〈F(Tωk
)y, f(x+ y)〉. (5.2)

With the definition of the classical convolution product of a distribution and a function on Rd,
the relation (5.2) can also be written in the form

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

F(Tωk
) ∗ f̆(−x). �

Proposition 5.2. For all f in S(Rd) the function P (f) is of class C∞ on Rd and we have

∀ x ∈ Rd,
∂

∂xj
P (f)(x) = P

(
∂

∂ξj
f

)
(x), j = 1, 2, . . . , d. (5.3)

Proof. By derivation under the integral sign, and by using the relation

∀ y ∈ Rd, iyjF(f)(y) = F
(
∂

∂ξj
f

)
(y),

we obtain (5.3). �
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5.2 Inversion formulas for the Dunkl intertwining operator
and its dual on the space S(Rd)

Theorem 5.1. For all f in S(Rd) we have

∀ x ∈ Rd, tV −1
k (f)(x) = Vk(P (f))(x). (5.4)

Proof. From [15, Theorem 4.1] for all f in S(Rd), the function tV −1
k (f) belongs to S(Rd). Then

from Theorem 3.1 we have

∀ x ∈ Rd, tV −1
k (f)(x) =

c2k
22γ+d

∫
Rd

K(iy, x)FD(tV −1
k (f))(y)ωk(y)dy. (5.5)

But from the relations (3.2), (1.7), (1.3), we have

∀ y ∈ Rd, FD(tV −1
k (f))(y) = F(f)(y),

and

∀ y ∈ Rd, K(iy, x) = F(µ̆x)(y),

where µ̆x is the probability measure given for a continuous function f on Rd by∫
Rd

f(t)dµ̌x(t) =
∫

Rd

f(−t)dµx(t).

Thus (5.5) can also be written in the form

∀ x ∈ Rd, tV −1
k (f)(x) =

c2k
22γ+d

∫
R
F(µ̆x)(y)ωk(y)F(f)(y)dy.

Then by using (5.1), the properties of the Fourier transform F and Fubini’s theorem we obtain

∀ x ∈ Rd, tV −1
k (f)(x) =

c2k
22γ+d

∫
Rd

F [ωkF(f)](y)dµ̆x(y) =
∫

Rd

P (f)(y)dµx(y).

Thus

∀ x ∈ Rd, tV −1
k (f)(x) = Vk(P (f))(x). �

Theorem 5.2. For all f in S(Rd) we have

∀ x ∈ Rd, V −1
k (f)(x) = P tVk(f)(x). (5.6)

Proof. We deduce the relation (5.6) by replacing f by tVk(f) in (5.4) and by using the fact
that the operator Vk is an isomorphism from E(Rd) onto itself. �

5.3 Inversion formulas for the dual Dunkl intertwining operator
on the space E ′(Rd)

The dual Dunkl intertwining operator tVk on E ′(Rd) is defined by

〈tVk(S), f〉 = 〈S, Vk(f)〉, f ∈ E(Rd).

The operator tVk is a topological isomorphism from E ′(Rd) onto itself. The inverse operator
is given by

〈tV −1
k (S), f〉 = 〈S, V −1

k (f)〉, f ∈ E(Rd), (5.7)

see [17, pages 26–27].

Theorem 5.3. For all S in E ′(Rd) the operator tV −1
k satisfies also the relation

〈tV −1
k (S), f〉 = 〈S, P tVk(f)〉, f ∈ S(Rd). (5.8)

Proof. We deduce (5.8) from (5.6) and (5.7). �
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6 Other expressions of the inversion formulas
for the Dunkl intertwining operator and its dual
when the multiplicity function is integer

In this section we suppose that the multiplicity function satisfies k(α) ∈ N\{0} for all α ∈ R+.
The following two Propositions give some other properties of the operator P defined by (5.1).

Proposition 6.1. Let E be a compact convex set of Rd. Then for all f in D(Rd) we have

supp f ⊂ E ⇒ suppP (f) ⊂ E.

Proof. From the relation (5.1) we have

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

∫
Rd

Ff(y)ei〈x,y〉ωk(y)dy. (6.1)

We consider the function F defined by

∀ z ∈ Cd, F (z) =

 ∏
α∈R+

(〈α, z〉)2k(α)

F(f)(z).

This function is entire on Cd and by using Theorem 2.6 of [1] we deduce that for all q ∈ N, there
exists a positive constant Cq such that

∀ z ∈ Cd, |F (z)| ≤ Cq(1 + ‖z‖2)−qeIE(Im z), (6.2)

where IE is the function given by (3.4).
The relation (6.1) can also be written in the form

∀ x ∈ Rd, P (f)(x) =
πdc2k
22γ

∫
Rd

F (y)ei〈x,y〉dy. (6.3)

Thus (6.3), (6.2) and Theorem 2.6 of [1], imply that suppPf ⊂ E. �

Proposition 6.2. For all f in S(Rd) we have

P (f) =
πdc2k
22γ

 ∏
α∈R+

(−1)k(α)

(
α1

∂

∂ξ1
+ · · ·+ αd

∂

∂ξd

)2k(α)
 (f). (6.4)

Proof. For all f in S(Rd), we have

∀ y ∈ Rd, ωk(y)F(f)(y) =
∏
α∈R+

(〈α, y〉)2k(α)F(f)(y). (6.5)

But

∀ y ∈ Rd, 〈α, y〉F(f)(y) = F
[
−i
(
α1

∂

∂ξ1
+ · · ·+ αd

∂

∂ξd

)
f

]
(y). (6.6)

From (6.5), (6.6) we obtain

∀ y ∈ Rd, ωk(y)F(f)(y) = F

 ∏
α∈R+

(−1)k(α)

(
α1

∂

∂ξ1
+ · · ·+ αd

∂

∂ξd

)2k(α)

f

 (y).

This relation, Definition 5.1 and the inversion formula for the Fourier transform F
imply (6.4). �

Remark 6.1. In this case the operator P is not a pseudo-differential operator but it is a partial
differential operator.
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6.1 The differential-difference operator Q

Definition 6.1. We define the differential-difference operator Q on S(Rd) by

∀ x ∈ Rd, Q(f)(x) = tV −1
k ◦ P ◦ tVk(f)(x).

Proposition 6.3.

i) The operator Q is linear and continuous from S(Rd) into itself.

ii) For all f in S(Rd) we have

∀ x ∈ Rd, TjQ(f)(x) = Q(Tjf)(x), j = 1, . . . , d,

where Tj, j = 1, 2, . . . , d, are the Dunkl operators.

Proof. We deduce the result from the properties of the operator tVk (see Theorem 3.2 of [17]),
and Proposition 5.2. �

Proposition 6.4. For all f in S(Rd) we have

∀ x ∈ Rd, Q(f)(x) =
πdc2k
22γ

F−1
D (ωkFD(f))(x). (6.7)

Proof. Using the relations (3.2), (5.1) and the properties of the operator tVk (see Theorem 3.2
of [17]), we deduce from Definition 6.1 that

∀ x ∈ Rd, Q(f)(x) = F−1
D {F ◦ P (tVk(f))}(x) =

πdc2k
22γ

F−1
D {F ◦ F−1[ωkFD(f)]}(x).

As the function ωkFD(f) belongs to S(Rd), then by applying the fact that the classical Fourier
transform F is bijective from S(Rd) onto itself, we obtain

∀ x ∈ Rd, Q(f)(x) =
πdc2k
22γ

F−1
D (ωkFD(f))(x). �

Proposition 6.5. The distribution Tω2
k

given by the function ω2
k is in S ′(Rd) and for all f

in S(Rd) we have

∀ x ∈ Rd, Q(f)(x) =
πdc4k
24γ+d

FD(Tω2
k
) ∗D f̆(−x),

where ∗D is the Dunkl convolution product of a distribution and a function on Rd.

Proof. It is clear that the distribution Tω2
k

given by the function ω2
k belongs to S ′(Rd). On the

other hand from the relations (6.7), (3.3) and (4.3) we obtain

∀ x ∈ Rd, Q(f)(x) =
πdc4k
24γ+d

∫
Rd

FD(τx(f))(y)ω2
k(y)dy

=
πdc4k
24γ+d

〈F(Tω2
k
)y, τx(f)(y)〉.

Thus Definition 4.1 implies

∀ x ∈ Rd, Q(f)(x) =
πdc4k
24γ+d

FD(Tω2
k
) ∗D f̆(−x). �
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Proposition 6.6. For all f in S(Rd) we have

Q(f) =
πdc2k
22γ

 ∏
α∈R+

(−1)k(α)(α1T1 + · · ·+ αdTd)2k(α)

 (f). (6.8)

Proof. For all f in S(Rd), we have

∀ y ∈ Rd, ωk(y)FD(f)(y) =
∏
α∈R+

(〈α, y〉)2k(α)FD(f)(y). (6.9)

But using (2.1), (2.2) we deduce that

∀ y ∈ Rd, 〈α, y〉FD(f)(y) = FD
[
− i(α1T1 + · · ·+ αdTd)f

]
(y). (6.10)

From (6.9), (6.10) we obtain

∀ y ∈ Rd, ωk(y)FD(f)(y) = FD

 ∏
α∈R+

(−1)k(α)(α1T1 + · · ·+ αdTd)2k(α)f

 (y).

This relation, Propositions 6.3, 6.4 and Theorem 3.1 imply (6.8). �

6.2 Other expressions of the inversion formulas for the Dunkl intertwining
operator and its dual on spaces of functions and distributions

In this subsection we give other expressions of the inversion formulas for the operators Vk and tVk
and we deduce the expressions of the representing distributions of the operators V −1

k and tV −1
k .

Theorem 6.1. For all f in S(Rd) we have

∀ x ∈ Rd, V −1
k (f)(x) = tVk(Q(f))(x). (6.11)

Proof. We obtain this result by using of Proposition 6.3, Theorem 5.2 and Definition 6.1. �

Proposition 6.7. Let E be a W -invariant compact convex set of Rd. Then for all f in D(Rd)
we have

supp f ⊂ E ⇐⇒ supp tVk(f) ⊂ E. (6.12)

Proof. For all f in D(Rd), we obtain from (3.2) the relations

tVk(f) = F−1 ◦ FD(f),
tV −1
k (f) = F−1

D ◦ F(f).

We deduce (6.12) from these relations, Theorem 3.2 and Theorem 2.6 of [1]. �

Proposition 6.8. Let E be a W -invariant compact convex set of Rd. Then for all f in D(Rd)
we have

supp f ⊂ E ⇒ suppQ(f) ⊂ E. (6.13)

Proof. We obtain (6.13) from Definition 6.1, Propositions 6.1 and 6.7. �
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Theorem 6.2. For all S in E ′(Rd) the operator tV −1
k satisfies also the relation

〈tV −1
k (S), f〉 = 〈S, tVk(Q(f))〉, f ∈ S(Rd). (6.14)

Proof. We deduce (6.14) from (5.7) and (6.11). �

Corollary 6.1. Let E be a W -invariant compact convex set of Rd. For all S in E ′(Rd) with
suppS ⊂ E, we have

supp tV −1
k (S) ⊂ E.

Definition 6.2. We define the transposed operators tP and tQ of the operators P and Q
on S ′(Rd) by

〈tP (S), f〉 = 〈S, P (f)〉, f ∈ S(Rd),

〈tQ(S), f〉 = 〈S,Q(f)〉, f ∈ S(Rd).

Proposition 6.9. For all S in S ′(Rd) we have

tP (S) =
πdc2k
22γ

 ∏
α∈R+

(
α
∂

∂ξ1
+ · · ·+ αd

∂

∂ξd

)2k(α)
S,

tQ(S) =
πdc2k
22γ

 ∏
α∈R+

(αT1 + · · ·+ αdTd)2k(α)

S,
where Tj, j = 1, 2, . . . , d, are the Dunkl operators defined on S ′(Rd) by

〈TjS, f〉 = −〈S, Tjf〉, f ∈ S(Rd).

Proposition 6.10. For all S in S ′(Rd) we have

F−1(tP (S)) =
πdc2k
22γ

F−1(S)ωk,

F−1
D (tQ(S)) =

πdc2k
22γ

F−1
D (S)ωk.

Proof. We deduce these relations from (5.1), (6.7) and the definitions of the classical Fourier
transform and the Dunkl transform of tempered distributions on Rd. �

Theorem 6.3. The representing distributions ηx and Zx of the inverse of the Dunkl intertwining
operator and its dual, are given by

∀ x ∈ Rd, ηx = tQ(νx) (6.15)

and

∀ x ∈ Rd, Zx = tP (µx), (6.16)

where µx and νx are the representing measures of the Dunkl intertwining operator Vk and its
dual tVk.
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Proof. From (1.5), for all f in S(Rd) we have

∀ x ∈ Rd, tVk(Q(f))(x) = 〈νx, Q(f)〉 = 〈tQ(νx), f〉. (6.17)

On the other hand from (1.4)

∀ x ∈ Rd, V −1
k (f)(x) = 〈ηx, f〉.

We obtain (6.15) from this relation, (6.17) and (6.11).
Using (1.3), for all f in S(Rd) we can also write the relation (5.4) in the form

∀ x ∈ Rd, tV −1
k (f)(x) = 〈µx, P (f)〉 = 〈tP (µx), f〉. (6.18)

But from (1.6) we have

∀ x ∈ Rd, tV −1(f)(x) = 〈Zx, f〉.

We deduce (6.16) from this relation and (6.18). �

Corollary 6.2. We have

∀ x ∈ Rd, ηx =
πdc2k
22γ

 ∏
α∈R+

(α1T1 + · · ·+ αdTd)
2k(α)

 (νx)

and

∀ x ∈ Rd, Zx =
πdc2k
22γ

 ∏
α∈R+

(
α1

∂

∂ξ1
+ · · ·+ αd

∂

∂ξd

)2k(α)
 (µx).

Proof. We deduce these relations from Theorem 6.3 and Proposition 6.9. �

7 Applications

7.1 Other proof of the sufficiency condition of Theorem 4.4

Let f be an entire function on Cd satisfying the condition (4.21). Then from Theorem 2.6 of [1],
the distribution F−1(f) belongs to E ′(Rd) and we have

suppF−1(f) ⊂ E.

From the relation

F−1
D (f) = tV −1

k ◦ F−1(f)

given in [17, page 27] and Corollary 6.1, we deduce that the distribution F−1
D (f) is in E ′(Rd)

and its support is contained in E.
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7.2 Other expressions of the Dunkl translation operators

We consider the Dunkl translation operators τx, x ∈ Rd, given by the relations (4.1), (4.2).

Theorem 7.1.

i) When the multiplicity function k(α) satisfies k(α) > 0 for all α ∈ R+, we have

∀ y ∈ Rd, τx(f)(y) = µx ∗ µy(P tVk(f)), f ∈ S(Rd), (7.1)

where ∗ is the classical convolution product of measures on Rd.

ii) When the multiplicity function satisfies k(α) ∈ N\{0} for all α ∈ R+, we have

∀ y ∈ Rd, τx(f)(y) = µx ∗ µy(tVk(Q(f))), f ∈ S(Rd). (7.2)

Proof. i) From the relations (4.1) and (1.3), for f in S(Rd) we have

∀ x, y ∈ Rd, τx(f)(y) =
∫

Rd

∫
Rd

V −1
k (f)(ξ + η)dµx(ξ)dµy(η).

By using the definition of the classical convolution product of two measures with compact
support on Rd, we obtain

∀ x, y ∈ Rd, τx(f)(y) = µx ∗ µy(V −1
k (f)).

Thus Theorem 5.2 implies the relation (7.1).
ii) The same proof as for i) and Theorem 6.1 give the relation (7.2). �
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