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Abstract. In this paper we prove that for any commutative (but in general non-associative)
algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex
algebra V = V0 ⊕ V2 ⊕ V3 ⊕ · · · , such that dimV0 = 1 and V2 contains A. We can choose V
so that if A has a unit e, then 2e is the Virasoro element of V , and if G is a finite group of
automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen
with a non-degenerate invariant bilinear form, in which case it is simple.
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1 Introduction

A vertex algebra V is a linear space, endowed with infinitely many bilinear products (n) :
V ⊗ V → V and a unit 1 ∈ V , satisfying certain axioms, see Section 2.1. In this paper we deal
with graded vertex algebras V =

⊕
i∈Z Vi, so that Vi(n)Vj ⊆ Vi+j−n−1 and 1 ∈ V0. A vertex

algebra is called OZ (abbreviation of “One-Zero”) [12] if it is graded so that dimV0 = 1 and
Vi = 0 for i = 1 or i < 0. If V is an OZ vertex algebra, then [9] V2 is a commutative (but not
necessary associative) algebra with respect to the product (1) : V2 ⊗ V2 → V2, with an invariant
symmetric bilinear form (i.e. such that 〈ab | c〉 = 〈a | bc〉), given by the product (3) : V2⊗V2 → V0.
It is called the Griess algebra of V .1

1.1 Formulation of the results

In this paper we prove the following result.

Theorem 1.1.

a. For any commutative algebra A with a symmetric invariant non-degenerate bilinear form
there is a simple OZ vertex algebra V such that A ⊆ V2.

b. If A has a unit e, then V can be chosen so that ω = 2e is a Virasoro element of V (see
Section 2.1 for the definition).

c. If G ⊂ AutA is a finite group of automorphisms of A, then V can be chosen so that
G ⊂ AutV .

We prove this theorem under the assumption, that the ground field k is a subfield of C, since
our proof uses some analytic methods (see Section 3). However, we believe that the statement
can be generalized to an arbitrary field of characteristic 0. Also, the assumption that the form
is non-degenerate does not seem to be very essential.

?This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. The full collection
is available at http://www.emis.de/journals/SIGMA/Kac-Moody algebras.html

1We note that the term “Griess algebra” might not be the most successful one, as the original Griess algebra [11]
is not quite a Griess algebra in our sense.
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In fact we suggest that the following conjecture might be true:

Conjecture 1.1.

a. For any commutative algebra A with a symmetric invariant bilinear form there is an OZ
vertex algebra V such that A = V2.

b. If dimA <∞, then V can be chosen so that dimVn <∞ for n = 3, 4, 5, . . ..

It follows from Theorem 1.1 that there are no Griess identities other than commutativity, in
other words, for any non-trivial identity in the variety of commutative algebras with symmetric
invariant bilinear forms there is a Griess algebra in which this identity does not hold.

Here we outline our construction of V . First we construct a vertex algebra B = B0 ⊕ B2 ⊕
B3 ⊕ · · · , such that B0 is a polynomial algebra and A ⊂ B2. In fact we construct the vertex
coalgebra of correlation functions on B, defined in Section 4, and then derive B from it. After
that we find a suitable invariant bilinear form 〈· | ·〉 on B and set V = B/Ker〈· | ·〉.

We remark that our methods would perfectly work for a more general problem: Given an
“initial segment” A0 ⊕ A1 ⊕ · · · ⊕ Am of a vertex algebra, closed under those of the vertex
operations (n) that make sense, find a vertex algebra V =

⊕
d>0 Vd such that Vd ⊃ Ad for

0 6 d 6 m.

1.2 Previously known results

Probably the most famous example of OZ vertex algebras is the Moonshine module V \, con-
structed by Frenkel, Lepowsky and Meurman in [8, 9], see also [1, 2]. Its Griess algebra V \

2

has dimension 196 884, and differs from the original 196 883-dimensional commutative algebra
constructed by Griess [11] by having an additional identity element. The automorphism group
of V \ and of V \

2 is the Fischer–Griess Monster [9, 11, 25]. It is proved by Dong et al. [3, 6], that
the representations of V \ are completely reducible, and the only irreducible representation is V \

itself. The present research was primarily motivated by this construction.
Another example of OZ vertex algebra is a Virasoro vertex algebra Vir [10, 26]. It is generated

by a single Virasoro element ω ∈ Vir2 so that the Griess algebra of Vir is kω. The representation
theory of the algebras Vir is investigated in [26].

If A is associative, than it is well known that A can appear as a Griess algebra, see [15, 27].
Lam [16] also showed the same for a simple Jordan algebra of type A, B or C. Other interesting
examples of OZ vertex algebras and their Griess algebras can be found in [12].

We remark that if a vertex algebra V is graded so that Vn = 0 for n < 0 and dimV0 = 1,
then V1 is a Lie algebra with respect to the product (0), with invariant bilinear form given by
product (1). The analogous problem of finding a vertex algebra V such that V1 is a given Lie
algebra has a well-know solution: to every Lie algebra L with an invariant bilinear form there
corresponds an affine Lie algebra L̂, so that a certain highest weight L̂-module has the desired
vertex algebra structure [9, 10].

1.3 Organization of the manuscript

In Section 2 we recall some basic definitions and notations of the theory of vertex algebras.
Then in Section 3 we consider a class of rational functions that we call regular. The correlation
functions of a sufficiently nice vertex algebra will belong to that class. Then in Section 3.4 we
define a more narrow class of admissible functions. The correlation functions of the algebras B
and V that we construct later are admissible. In Section 4 we introduce a notion of vertex
coalgebra of correlation functions, and show how to reconstruct a vertex algebra by its coalgebra
of correlation functions. In Section 4.6 we show that in some important cases the component of
degree 0 of such vertex algebra is isomorphic to a polynomial algebra. In Section 5 we study some
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easy properties of OZ vertex algebras, in particular (in Section 5.2) investigate the behavior of
the correlation functions in the presence of a Virasoro element. Then in Section 6 we construct
certain vertex algebra B using the coalgebra techniques developed in Section 4 and show (in
Section 6.1) how the existence of the algebra B implies Theorem 1.1.

1.4 Further questions

Though the methods used in this paper are very explicit, it seems that the OZ vertex algebras
constructed here are of “generic type”, i.e. they probably don’t have these nice properties people
are looking for in vertex algebra theory – for example, an interesting representation theory,
various finiteness conditions, controllable Zhu algebra, etc. It would be extremely interesting to
recover the OZ vertex algebras mentioned above using our approach, especially the Moonshine
module V \.

Also, it would be very interesting to see whether any properties of the commutative algebra A
(e.g. if A is a Jordan algebra) imply any properties of the OZ vertex algebra V , constructed in
Theorem 1.1.

2 General facts about vertex algebras

Here we fix the notations and give some minimal definitions. For more details on vertex algebras
the reader can refer to the books [9, 14, 17, 27]. Unless otherwise noted, we assume that all
algebras and spaces are over a ground field k ⊂ C.

2.1 Definition of vertex algebras

Definition 2.1. A vertex algebra is a linear space V equipped with a family of bilinear products
a ⊗ b 7→ a(n)b, indexed by integer parameter n, and with an element 1 ∈ V , called the unit,
satisfying the identities (V1)–(V4) below. Let D : V → V be the map defined by Da = a(−2)1.
Then the identities are:

(V1) a(n)b = 0 for n� 0,

(V2) 1(n)a = δn,−1 a and a(n)1 = 1
(−n−1)! D

−n−1a,

(V3) D(a(n)b) = (Da)(n)b+ a(n)(Db) and (Da)(n)b = −na(n− 1)b,

(V4) a(m)
(
b(n)c

)
− b(n)

(
a(m)c

)
=
∑
s>0

(
m

s

)(
a(s)b

)
(m+ n− s)c

for all a, b, c ∈ V and m,n ∈ Z.

Another way of defining vertex algebras is by using the generating series

Y : V → Hom(V, V ((z)))

defined for a ∈ V by

Y (a, z) =
∑
n∈Z

a(n) z−n−1,

where a(n) : V → V is the operator given by b 7→ a(n)b, and z is a formal variable. The most
important property of these maps is that they are local: for any a, b ∈ V there is N > 0 such
that [

Y (a,w), Y (b, z)
]
(w − z)N = 0. (2.1)
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In fact, this is the only essential condition that one needs to postulate to define vertex algeb-
ras [14, 19]. The minimal number N for which (2.1) holds is called the locality of a and b, and
is denoted by loc(a, b).

Remark 2.1. One could extend this definition to allow a negative locality (see [23]), so that

loc(a, b) = min{n ∈ Z | a(m)b = 0 ∀ m > n }.

In terms of the series Y , the identities (V2) and (V3) read respectively

Y (1, z) = id, Y (a, z)1 = exp(Dz)a (2.2)

and

Y (Da, z) = [D, Y (a, z) ] = ∂zY (a, z). (2.3)

Among other identities that hold in vertex algebras are the quasi-symmetry

a(n)b = −
∑
i>0

(−1)n+iD(i)
(
b(n+ i)a

)
, (2.4)

and the associativity identity

(
a(m)b

)
(n)c =

∑
s>0

(−1)s

(
m

s

)
a(m− s)

(
b(n+ s)c

)
−
∑
s6m

(−1)s

(
m

m− s

)
b(n+ s)

(
a(m− s)c

)
. (2.5)

For m > 0 this simplifies to

(
a(m)b

)
(n)c =

m∑
s=0

(−1)s

(
m

s

)
[a(m− s), b(n+ s) ] c,

which can also be derived from the identity (V4) of Definition 2.1 by some simple manipulations.
A vertex algebra V is called graded (by the integers) if V =

⊕
i∈Z Vi is a graded space, so

that Vi(n)Vj ⊆ Vi+j−n−1 and 1 ∈ V0. It is often assumed that a vertex algebra V is graded
and V2 contains a special element ω, called the Virasoro element of V , such that ω(0) = D,
ω(1)|Vi = i and the coefficients ω(n) generate a representation of the Virasoro Lie algebra:

[ω(m), ω(n) ] = (m− n)ω(m+ n− 1) + δm+n,2
1
2

(
m− 1

3

)
c (2.6)

for some constant c ∈ k called the central charge of V . In this case V is called conformal vertex
algebra or, when dimVi <∞, a vertex operator algebra. The condition (2.6) is equivalent to the
following relations

ω(0)ω = Dω, ω(1)ω = 2ω, ω(2)ω = 0, ω(3)ω =
c

2
, ω(n)ω = 0 for n > 4. (2.7)

This means that ω generates a Virasoro conformal algebra, see [14].

Definition 2.2 ([12]). A vertex algebra V is called OZ (abbreviation of “One-Zero”) if it is
graded so that V = k1⊕

⊕
n>2 Vn.



On Griess Algebras 5

An OZ vertex algebra V has dimV0 = 1 and dimV1 = 0, which explains the name. The
component V2 is a commutative (but not necessarily associative) algebra with respect to the
product a⊗b 7→ ab = a(1)b, called the Griess algebra of V . The commutativity follows from (2.4).
The algebra V2 has a bilinear form 〈a | b〉 = a(3)b. From (2.4) it follows that this form is
symmetric, and from (2.5) it follows that it it invariant: 〈ab | c〉 = 〈a | bc〉.

Remark 2.2. It should be noted that the idea that the 196 883-dimensional Griess’s algebra
can be realized (after adjoining a unit) as a degree 2 component of a vertex algebra is due to
Frenkel, Lepowsky and Meurman [9]. The general fact that degree 2 component of any OZ
vertex algebra has a commutative algebra structure with a symmetric invariant bilinear form is
mentioned in this book as a triviality.

One can define analogous structure on the components V0 and V1. Namely, if a graded vertex
algebra V satisfies Vn = 0 for n 6 0, then V0 is an associative commutative algebra with respect
to the product (−1), and V1 is a Lie algebra with respect to the product (0) with an invariant
symmetric bilinear form given by the product (1).

We note that all definitions in this subsection make sense for k being a commutative associa-
tive algebra containing Q. In this case by “linear space” we understand a torsion-free k-module.
This remark applies also to Sections 2.4–2.6 below, and to the parts of Section 2.3 that does not
refer to correlation functions.

2.2 Correlation functions

Denote by Φl the space of rational functions in the variables z1, . . . , zl of the form

α = p(z1, . . . , zl)
∏

16i<j6l

(zi − zj)kij , p ∈ k[z1, . . . , zl], (2.8)

where kij ∈ Z. Obviously we have a product Φl⊗Φm → Φl+m given by multiplying the functions
and renaming the variables.

Denote by ordij α the order of α ∈ Φl at zi − zj . The space Φl =
⊕

d∈Z Φl
d is graded in the

usual sense, so that deg zi = 1.
Let V be a graded vertex algebra, and let f : V → k be a linear functional of degree d ∈ Z,

i.e. f(Vn) = 0 for n 6= d. Take some elements a1, . . . , al ∈ V of degrees d1, . . . , dl respectively
and formal variables z1, . . . , zl. Consider the series

f
(
Y (a1, z1) · · ·Y (al, zl)1

)
=

∑
m1,...,ml∈Z

f
(
a1(m1) · · · al(ml)1

)
z−m1−1
1 · · · z−ml−1

l . (2.9)

The following properties of the series (2.9) can be deduced from Definition 2.1 (see [7]):

Rationality. The series (2.9) converge in the domain |z1| > · · · > |zl| to a rational function
αf (z1, . . . , zl) ∈ Φl such that ordij αf > −loc(ai, aj). It is called a correlation function
of V .

Commutativity. For any permutation σ ∈ Σl, the correlation function corresponding to
aσ(1), . . . , aσ(l) and the same functional f : V → k is αf (zσ(1), . . . , zσ(l)).

Associativity. The series

f
(
Y (Y (a1, z1 − z2)a2, z2)Y (a3, z3) · · ·Y (al, zl)1

)
converge in the domain |z2| > · · · > |zl| > |z1 − z2| > 0 to αf (z1, . . . , zl).
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Since deg ai(mi) = di −mi − 1, we get degαf = deg f −
∑l

i=1 di.
It can be shown (see [7, 17]) that the rationality and commutativity properties of correlation

functions together with the conditions (2.2) and (2.3) can serve as an equivalent definition of
vertex algebras. We will use this fact in Section 4 below.

In order to explain the meaning of the associativity condition, we need to introduce another
definition. Take some 1 6 i < j 6 l. A function α ∈ Φl has expansion

α(z1, . . . , zn) =
∑
k>k0

αk(z1, . . . , ẑi, . . . , zl) (zi − zj)k (2.10)

for αk ∈ Φl−1. Here and below the hat over a term indicates that this term is omitted. Then
we define the operators ρ(k)

ij : Φl → Φl−1 by setting

ρ
(k)
ij α = αk. (2.11)

An important property of these maps is that for any 1 6 i < j 6 l and 1 6 s < t 6 l, such that
{s, t} ∩ {i, j} = ∅, and m, k ∈ Z,

ρ
(m)
st ρ

(k)
ij = ρ

(k)
ij ρ

(m)
st . (2.12)

Now the associativity condition means that if αf is a correlation function corresponding to
the elements a1, . . . , al and a functional f : V → k, then ρ

(k)
12 αf is the correlation function

corresponding to the elements a1(−k − 1)a2, a3, . . . , al and the same functional f .

2.3 The action of sl2

In this paper we will deal with vertex algebras equipped a certain action of the Lie algebra sl2.

Definition 2.3. A vertex algebra V is said to have sl2 structure, if V =
⊕

d∈Z Vd is graded,
and there is a locally nilpotent operator D∗ : V → V of degree −1, such that D∗1 = 0 and

[D∗, a(m) ] = (2d−m− 2) a(m+ 1) + (D∗a)(m) (2.13)

for every a ∈ Vd.

Let δ : V → V be the grading derivation, defined by δ|Vd
= d. It is easy to compute that if

D∗ : V → V satisfies condition (2.13), then

[D∗, D ] = 2δ, [δ, D ] = D, [δ, D∗ ] = −D∗,

so that D∗, D and δ span a copy of sl2.
All vertex algebras in this paper are assumed to have sl2 structure, all ideals are stable

under sl2 and homomorphisms of vertex algebras preserve the action of sl2 .
An element a ∈ V such that D∗a = 0 is called minimal. It is easy to see that if V is generated

by minimal elements, then any operator D∗ : V → V satisfying (2.13) must be locally nilpotent.
If V has a Virasoro element ω, then we can take D∗ = ω(2). Note that we always have

D = ω(0) and δ = ω(1), therefore conformal vertex algebras always have an sl2 structure.
Vertex algebras with an action of sl2 as above were called quasi-vertex operator algebras in [7]

and homogeneous minimal elements are sometimes called quasi-primary.
Now we describe the dual action on the correlation functions. It follows from (2.3) that the

operator dual to D is ∆ = ∂z1 + · · ·+ ∂zl
, so that

f
(
DY (a1, z1) · · ·Y (al, zl)1

)
= ∆αf (z1, . . . , zl)
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for any homogeneous a1, . . . , al ∈ V and f : V → k. Note that ∆ : Φl → Φl is an operator of
degree −1.

To describe the dual operator of D∗, consider the differential operator ∆∗(n, z) = z2∂z +n z.
For the formal variables z1, . . . , zl, and for a sequence of integers n1, . . . , nl set

∆∗(n1, . . . , nl) = ∆∗(n1, z1) + · · ·+ ∆∗(nl, zl).

By (2.13), we have

f
(
D∗Y (a1, z1) · · ·Y (al, zl)1

)
= ∆∗(2d1, . . . , 2dl)αf (z1, . . . , zl)

for minimal homogeneous elements a1, . . . , al ∈ V of degrees deg ai = di and a functional f :
V → k.

Using the relations

∆∗(n1, . . . , nl) (zi − zj) = (zi − zj) ∆∗(n1, . . . , ni + 1, . . . , nj + 1, . . . , nl),
∆∗(n1, . . . , nl) zi = zi ∆∗(n1, . . . , ni + 1, . . . , nl), (2.14)

where zi and zi − zj are viewed as operators on Φl, we see that ∆∗(n1, . . . , nl) is an operator
on Φl of degree 1.

We are going to need some easy facts about sl2-module structure of V :

Lemma 2.1.

a. If d < 0, then Vd = (D∗)1−d V1.

b. DV−1 ⊆ D∗V1.

These statements hold for any graded sl2-module V on which D∗ is locally nilpotent and
δ
∣∣
Vd

= d [24]. The second statement follows easily from the first:

DV−1 = DD∗V0 = D∗DV0 ⊆ D∗V1.

For vertex algebras the action of sl2 was also investigated in [5].

2.4 The universal enveloping algebra

For any vertex algebra V we can construct a Lie algebra L = Coeff V in the following way
[1, 14, 20, 22]. Consider the linear space k[t, t−1] ⊗ V , where t is a formal variable. Denote
a(n) = a ⊗ tn for n ∈ Z. As a linear space, L is the quotient of k[t, t−1] ⊗ V by the subspace
spanned by the relations (Da)(n) = −na(n− 1). The brackets are given by

[a(m), b(n) ] =
∑
i>0

(
m

i

)(
a(i)b

)
(m+ n− i), (2.15)

which is precisely the identity (V4) of Definition 2.1. The spaces L± = Span{ a(n) |n<
> 0 } ⊂ L

are Lie subalgebras of L so that L = L− ⊕ L+.

Remark 2.3. The construction of L makes use of only the products (n) for n > 0 and the
map D. This means that it works for a more general algebraic structure, known as conformal
algebra [14, 21].
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Now assume that the vertex algebra V has an sl2 structure. Then (V3) of Definition 2.1
and (2.13) define derivations D : L → L and D∗ : L → L so we get an action of sl2 on L by
derivations. Denote by L̂ = Lo sl2 the corresponding semi-direct product.

The Lie algebra L̂ = Ĉoeff V and its universal enveloping algebra U = U(L̂) inherit the grad-
ing from V so that deg a(m) = deg a−m− 1. The Frenkel–Zhu topology [10] on a homogeneous
component Ud is defined by setting the neighborhoods of 0 to be the spaces Uk

d =
∑

i6k Ud−iUi,
so that

· · · ⊂ Uk−1
d ⊂ Uk

d ⊂ Uk+1
d ⊂ · · · ⊂ Ud,

⋂
k∈Z

Uk
d = 0,

⋃
k∈Z

Uk
d = Ud.

Let U =
⊕

d∈Z Ud be the completion of U(L̂) in this topology. Consider the ideal I ⊂ U
generated by the relations

(
a(m)b

)
(n) =

∑
s>0

(−1)s

(
m

s

)
a(m− s)b(n+ s)−

∑
s6m

(−1)s

(
m

m− s

)
b(n+ s)a(m− s)

for all a, b ∈ V and m,n ∈ Z. Note that the relations above are simply the associativity
identity (2.5). Denote by W = U/Ī the quotient of U by the closure of I.

For a finite ordered set of elements S = {a1, . . . , al}, ai ∈ V , let WS be the 〈D, δ,D∗〉-module
generated by all monomials a1(m1) · · · al(ml) ∈W , mi ∈ Z.

Definition 2.4 ([10, 24]). The universal enveloping algebra of V is

U(V ) =
⋃
S
WS ⊂W,

where the union is taken over all finite ordered sets S ⊂ V , and WS ⊂ W is the completion of
the space WS in the Frenkel–Zhu topology.

Remark 2.4. In fact, it follows from the commutativity property of correlation functions (see
Section 2.2) that if S and S ′ differ by a permutation, then WS = WS′ .

It is proved in [24] that any module over a vertex algebra V is a continuous module over U(V ),
in the sense that for any sequence u1, u2, . . . ∈ U(V ) that converges to 0 and for any v ∈M we
have uiv = 0 for i � 0. Conversely, any U(V )-module M , such that a(m)v = 0 for any a ∈ V ,
v ∈M and a(m)v = 0 for m� 0, is a module over V .

Remark 2.5. The algebra W = U(L̂)/Ī is also a good candidate for universal enveloping
algebra of V . It has the following property [10]: consider a graded space M such that Md = 0
for d� 0; then M is a W -module if and only if M is an V -module.

On the other hand, we could define an algebra Û(V ) such that any series of elements
from U(L̂), that make sense as an operator on any V -module, would converge in Û(V ). However,
this algebra is too big for our purposes, for example there is no way of defining an involution in
this algebra, as we do in Section 2.5 below.

2.5 Invariant bilinear forms

The key ingredient of our constructions is the notion of invariant bilinear form on vertex algebra.
Here we review the results of [24], that generalize the results of Frenkel, Huang and Lepowsky [7]
and Li [18].
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Let V be a vertex algebra with an sl2 structure, as in Section 2.3. It is shown in [7, 24], that
there is an anti-involution u 7→ u∗ on the universal enveloping algebra U(V ) such that D 7→ D∗,
D∗ 7→ D, δ∗ = δ and

a(m)∗ = (−1)deg a
∑
i>0

1
i!
(
(D∗)ia

)
(2 deg a−m− 2− i)

for a homogeneous a ∈ V and m ∈ Z. In particular, if D∗a = 0, then

a(m)∗ = (−1)deg a a(2 deg a−m− 2),

which can be written as

Y (a, z)∗ =
∑
m∈Z

a(m)∗ z−m−1 = (−1)deg a Y (a, z−1) z−2 deg a. (2.16)

It is proved in [24] that for any u ∈ U(V )0,

u1− u∗1 ∈ D∗V1. (2.17)

Let K be a linear space over k.

Definition 2.5 ([7, 18]). A K-valued bilinear form 〈· | ·〉 on V is called invariant if

〈a(m)b | c〉 = 〈b | a(m)∗c〉 and 〈Da | b〉 = 〈a |D∗b〉

for all a, b, c ∈ V and m ∈ Z.

The radical Rad〈· | ·〉 =
{
a ∈ V

∣∣ 〈a | b〉 = 0 ∀ b ∈ V
}

of an invariant form is an ideal of V .
Also, since 〈δa | b〉 = 〈a | δb〉, we have 〈Vi |Vj〉 = 0 for i 6= j.

Given a K-valued invariant form 〈· | ·〉 on V , one can consider a linear functional f : V0 → K
defined by f(a) = 〈1 | a〉. Since f(D∗a) = 〈1 |D∗a〉 = 〈D1 | a〉 = 0, we get that f(D∗V1) = 0.
Also, the form can be reconstructed from f by the formula 〈a | b〉 = f

(
a(−1)∗b

)
.

Proposition 2.1 ([18, 24]). There is a one-to-one correspondence between invariant K-valued
bilinear forms 〈· | ·〉 on a vertex algebra V and linear functionals f : V0/D

∗V1 → K, given by
f(a) = 〈1 | a〉, 〈a | b〉 = f

(
a(−1)∗b

)
. Moreover, every invariant bilinear form on V is symmetric.

Remark 2.6. We observe that a vertex algebra V such that V0 = k1 and D∗V1 = 0 is simple
if and only if the invariant k-valued bilinear form on V (which is unique by the above) is non-
degenerate. Indeed, any homomorphism V → U of vertex algebras must be an isometry, hence
its kernel must belong to the radical of the form.

2.6 Radical of a vertex algebra

Let I = 〈D∗V1〉 ⊂ V be the ideal of a vertex algebra V generated by the space D∗V1. Its degree 0
component I0 = U(V )0D∗V1 is spanned by the elements a1(m1) · · · al(ml)D∗v such that ai ∈ V ,
mi ∈ Z, deg a1(m1) · · · al(ml) = 0 and v ∈ V1, since we have DV−1 ⊂ D∗V1 ⊂ I0 by Lemma 2.1b.
Note that Lemma 2.1a also implies that Vd ⊂ I for d < 0.

It follows from (2.4) and (2.5) that K = V0/I0 is the commutative associative algebra with
respect to the product (−1) with unit 1. Let f : V0 → K be the canonical projection. By
Proposition 2.1, the map f corresponds to an invariant K-valued bilinear form 〈· | ·〉 on V .

Definition 2.6. The radical of V is RadV = Rad〈· | ·〉.
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Remark 2.7. This definition has nothing to do with the radical defined in [4].

Denote V = V/RadV . The following proposition summarizes some properties of V that we
will need later.

Proposition 2.2 ([24]).

a. Rad(V ) = 0.

b. V =
⊕

n>0 Vn, so that V0 = V0/I0 = K, and V is a vertex algebra over K.

c. Every ideal J0 ⊂ K can be canonically extended to an ideal J ⊂ V , such that J ∩ V0 = J0.
The ideal J is the maximal among all ideals I ⊂ V with the property I ∩ V0 = J0. In
particular there are no non-trivial ideals I ⊂ V such that I ∩ V0 = 0.

The ideal J ⊂ V extending J0 ⊂ V0 is constructed in the following way: let g : K → K/J0

be the canonical projection, by Proposition 2.1 it defines a K/J0-valued invariant bilinear form
〈· | ·〉g on V . Then set J = Rad〈· | ·〉g.

3 Regular functions

3.1 Components

Let V be a vertex algebra with sl2 structure. As in Section 2.2, take some homogeneous elements
a1, . . . , al ∈ V of deg ai = di and a functional f : Vd → k of degree d, and let α = αf (z1, . . . , zl) ∈
Φl be the corresponding correlation function, given by (2.9). We have degα = d−

∑
i di.

Denote by P the set of all partitions {1, . . . , l} = I t J of the set {1, . . . , l} into two disjoint
subsets. For every P = (I, J) ∈ P, the function α has an expansion

α =
∑
n>m

(α)n, where (α)n = (α)n(P ) =
∑

j

α′d−n,j α
′′
n,j , (3.1)

for some m ∈ Z. This expansion is obtained in the following way: Let I = {i1, . . . , i|I|} and
J = {j1, . . . , j|I|}. Expand α in power series in the domain |zi1 | > |zi2 | > · · · > |zj1 | > |zj2 | > · · ·
and collect terms with powers of { zi | i ∈ I } and { zj | j ∈ J }. Note that the second sum in (3.1)
is finite. Here α′n,j and α′′n,j are rational functions depending on the variables { zi | i ∈ I }, and
α′′n,j and { zi | i ∈ J } respectively, and we have

degα′n,j = n−
∑
i∈I

di and degα′′n,j = n−
∑
i∈J

di.

We call the term (α)n in (3.1) the component of α of degree n corresponding to partition I t J .
Note that α′′n,j ∈ Φ|J |, while in general α′n,j 6∈ Φ|I|, since α′n,j may have a pole at zi.

Assume that α = αf satisfies (α)n = 0 for n < m, and assume that I = {i1, . . . , ir},
J = {ir+1, . . . , il}. Then f

(
ai1(m1) · · · ail(ml)1

)
= 0 whenever deg air+1 · · · ail(ml) < m.

For example, suppose that k is the order of α at zi = zj . Take a partition {1, . . . , l} =
{1, . . . , î, . . . , ĵ, . . . , l} t {i, j}. Then (α)n = 0 for n < di + dj + k, due to the associativity
property of Section 2.2.

We are going to use the above terminology even when α ∈ Φl does not necessarily correspond
to a linear functional on a vertex algebra (for some fixed integers k1, . . . , kl).
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3.2 Components of degree 0

Denote by P̄ the set of unordered partitions of {1, . . . , l}. Clearly, we have a projection P 3
P 7→ P̄ ∈ P̄.

Fix some integers d1, . . . , dl. Suppose that a function α ∈ Φl of degree −
∑
di satisfies

(α)n(P ) = 0 for all n < 0 and P ∈ P. Then the expansion (3.1) has a leading term (α)0(P ). It
is easy to see that (α)0 depends only on the unordered partion P̄ .

Proposition 3.1. Suppose that for every partition P = (I1, I2) ∈ P̄ we have a function
α(P ) =

∑
j α

(1)
j α

(2)
j , where α(s)

j depends on the variables { zi | i ∈ Is }, degα(s)
j = −

∑
i∈Is

di

and (α(s)
j )d = 0 for d < 0, s = 1, 2. Assume that for any Q ∈ P̄ we have

(α(P ))0(Q) = (α(Q))0(P ). (3.2)

Then there is a function α ∈ Φl, kP ∈ k, such that (α)0(P ) = α(P ). Moreover, α is a linear
combination of α(P )’s and their degree 0 components.

Proof. Introduce a linear ordering on the subsets of {1, . . . , l} such that I < J if |I| < |J |,
and then extend it to P̄ so that P = {I1, I2} < Q = {J1, J2} if I1 < J1 and I1 6 I2, J1 6 J2.
Set Pmin = min{P ∈ P̄ |α(P ) 6= 0 }. We will prove the existence of α by induction on |{P ∈
P̄ |α(P ) 6= 0 }|. If α(P ) = 0 for all P , take α = 0.

We observe that if α ∈ Φl has degree −
∑

i di and (α)d = 0 for d < 0, then the family
of components {α(P ) = (α)0(P )}P∈P̄ satisfies (3.2). Also, if collections {α(P )} and {β(P )}
satisfy (3.2), then so does {α(P ) + β(P )}.

Now for any P ∈ P̄2 set β(P ) = α(P )− (α(Pmin))0(P ). Obviously, β(Pmin) = 0, and also, if
P<Pmin, then α(P ) = 0 and hence, using (3.2), β(P ) = −(α(Pmin)0)(P ) = −(α(P )0)(Pmin) = 0.
By the above observation, the collection {β(P )} satisfies (3.2), therefore by induction, there is
a function β ∈ Φl, such that (β)0(P ) = β(P ) for any P ∈ P̄. Now take α = β + α(Pmin). �

Remark 3.1. We can define components (α)n(P ) and the decomposition (3.1) for partitions
P of {1, . . . , l} into more than two parts. Suppose we know the components α(P ) for all such
partitions P . Then one can show that the function α ∈ Φl, such that (α)0(P ) = α(P ), can be
reconstructed by the following formula:

α =
∑
P∈P̄

(−1)|P |
(
|P | − 1

)
!α(P ), (3.3)

where P̄ is the set of all unordered partitions of {1, . . . , l} and |P | is the number of parts of
a partition P ∈ P̄.

Remark 3.2. It follows from the proof of Proposition 3.1 that instead of (3.2) it is enough to
require that the components α(P ) satisfy the following property: If α(Q) = 0 for some Q ∈ P̄,
then (α(P ))0(Q) = 0 for every P ∈ P̄.

3.3 Regular functions

Recall that in Section 2.3 we have defined operators ∆ and ∆∗, so that for a correlation
function αf (z1, . . . , zn) ∈ Φl corresponding to a linear functional f : Vd → k and elements
a1 ∈ Vd1 , . . . , al ∈ Vdl

we have f
(
DVd−1

)
= 0 if and only if ∆αf = 0 and f

(
D∗Vd+1

)
= 0 if and

only if ∆∗(2d1, . . . , 2dl)αf = 0.
It is easy to describe all functions α(z1, . . . , zl) ∈ Φl, such that ∆α = 0. These are the

functions α that are invariant under translations, since

α(z1 + t, . . . , zl + t) = exp(t∆)α(z1, . . . , zl) = α(z1, . . . , zl).

by the Taylor formula. In other words, such α depends only on the differences zi − zj .



12 M. Roitman

Now we will investigate the functions α which are killed by ∆∗.

Definition 3.1. A function α ∈ Φl is called (n1, . . . , nl)-regular if ∆∗(n1, . . . , nl)αf = 0.

Example 3.1. For an integer symmetric l × l matrix S = {sij} with sii = 0 define

π(S) =
∏

16i<j6l

(zi − zj)sij ∈ Φl. (3.4)

The relations (2.14) imply that

∆∗(n1, . . . , nl)
(
π(S)

)
=
(
(n1 + s1)z1 + · · ·+ (nl + sl)z1

)
π(S),

where si =
∑

j sij . Therefore, ∆∗(n1, . . . , nl)
(
π(S)

)
= 0 if and only if si = −ni for i = 1, . . . , l.

In this case the matrix S will be called (n1, . . . , nl)-regular, so that π(S) is a regular function
whenever S is a regular matrix.

Remark 3.3. One can show, though we will not use this here, that the space of regular functions
Ker ∆∗(n1, . . . , nl) ⊂ Φl is spanned by the products π(S) where S = {sij} runs over the set of
n1, . . . , nl-regular matrices such that sij > kij . This description is analogous to the description of
Ker ∆ above. Moreover, using this description, the dimensions of the homogeneous components
of the spaces Ker∆∗(n1, . . . , nl) ⊂ Φl can be given a combinatorial interpretation, in fact, they
are certain generalizations of Catalan numbers.

Assume we have a homogeneous linear functional f : V → k such that f(D∗V ) = 0, and
the elements ai ∈ Vdi

, i = 1, . . . , l. Then by Lemma 2.1a, we have deg f > 0, and therefore
the corresponding correlation function αf , given by (2.9), is (2d1, . . . , 2dl)-regular and satisfies
degαf > −

∑
i di. Moreover, if deg f = 0, then also f(DV ) = 0 by Lemma 2.1b, and therefore

∆αf = 0.
Let us investigate the effect of the anti-involution u 7→ u∗ of the enveloping algebra U(V )

(see Section 2.5) on the correlation functions. Similarly to the series (2.9), one can consider the
series

f
((
Y (a1, z1) · · ·Y (al, zl)

)∗
1
)

= f
(
Y (al, zl)∗ · · ·Y (a1, z1)∗1

)
,

which can be shown to converge in the domain |z1| < · · · < |zl| to a rational function
α∗f (z1, . . . , zl) ∈ Φl. Since f(D∗ai) = 0, we can apply the formula (2.16) to each ai(n)∗ and
then it is easy ti check that

α∗f = (−1)d1+···+dl z−2d1
1 · · · z−2dl

l αf (z−1
1 , . . . , z−1

l ). (3.5)

It follows from (2.17) and the fact that f(D∗V1) = 0 that α∗f = αf .
In Section 4.3, given a collection of integers {kij} for 1 6 i < j 6 l, we will construct a vertex

algebra F such that any function α ∈ Φl such that ordij α > kij will be a correlation function
on F , therefore the above properties hold for any (2d1, . . . , 2dl)-regular function. It follows that
the above properties of correlation functions hold for all functions in Φl. Namely, we have the
following proposition:

Proposition 3.2. Let α ∈ Φl be a (2d1, . . . , 2dl)-regular function. Then degα > −
∑

i di and if
degα = −

∑
i di, then ∆α = 0 and α∗ = α.

Here α∗ is given by (3.5).

Remark 3.4. Proposition 3.2 can also be easily deduced from the fact that every regular
function is a linear combination of the products π(S). Also, one can show that a function α ∈ Φl

of degree −
∑
di is (2d1, . . . , 2dl)-regular if and only if α∗ = α.
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Corollary 3.1. Let α ∈ Φl be a (2d1, . . . , 2dl)-regular function of degree −
∑

i di, and let (α)n =∑
j α

′
−n,j α

′′
n,j be the degree n component (3.1) of α with respect to a partition {1, . . . , l} = I tJ .

Then the degree n component of α with respect to partition J t I is
∑

j(α
′′
n,j)

∗(α′−n,j)
∗.

Remark 3.5. It is easy to compute using (2.16) that for any correlation function α (and
therefore, for any function α ∈ Φl) one has

∆∗(n1, . . . , nl)α∗ = −(∆α)∗,

where

α∗(z1, . . . , zl) = z−n1
1 · · · z−nl

l α(z−1
1 , . . . , z−1

l ).

As before, this can be easily computed without any reference to vertex algebras.

3.4 Admissible functions

In this section by “regular” we mean (4, . . . , 4)-regular, and set ∆∗ = ∆∗(4, . . . , 4).

Definition 3.2. A regular function α ∈ Φl is called admissible if for every partition {1, . . . , l} =
I t J we have (α)n = 0 for n < 0 or n = 1. If also (α)0 = 0 for all partitions, then α is called
indecomposable.

Denote the space of all admissible functions in l variables by Rl ⊂ Φl, and the space of all
indecomposable admissible functions by Rl

0 ⊂ Rl.
We have R1 = 0, R2 = k(z1− z2)−4, R3 = R3

0 = k (z1− z2)−2(z1− z3)−2(z2− z3)−2, and it is
easy to compute, using e.g. the representation of regular functions by the products π(S), that
dimR4

0 = 3, dimR4 = 6, dimR5
0 = 16, dimR5 = 26 (compare with Section 5.4 below).

We establish here a few simple properties of admissible functions. Recall that the operators
ρ
(k)
ij : Φl → Φl−1 where defined in (2.11).

Proposition 3.3. Let α ∈ Rl, l > 3 and 1 6 i < j 6 l.

a. ordij α > −4 and if α ∈ Rl
0, then ordij α > −2.

b. ρ(−4)
ij α ∈ Rl−2, ρ(−3)

ij α = 0 and ρ(−2)
ij α ∈ Rl−1.

c. The function α can be uniquely written as a linear combination of the products of inde-
composable admissible functions.

The product in (c) is understood in terms of the operation Φl ⊗ Φm → Φl+m defined in
Section 2.2.

Proof. To simplify notations, suppose (i, j) = (l − 1, l). Consider the expansion (2.10) for
the function α(z1, . . . , zl) ∈ Rl. If we expand every coefficient αk(z1, . . . , zl−1) in the power
series in zl−1 around 0, we will get exactly the component expansion (3.1) for the partition
{1, . . . , l − 2} t {l − 1, l}. Then the minimal component is

(α)k0+4 = αk0(z1, . . . , zl−2, 0) (zl−1 − zl)k0 ,

where k0 = ordl−1,l α. This shows that k0 > −4 and, since (α)1 = 0, we have k0 6= −3. Also,
if α is indecomposable, then k0 > 2, which proves (a).

Now assume that k0 = −4. Then we have

0 = (α)1 =
( ∂α−4

∂zl−1

∣∣∣
zl−1=0

) (
zl−1(zl−1 − zl)−4

)
+
(
α3

∣∣
zl−1=0

)
(zl−1 − zl)−3.
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Therefore, α−4 does not depend on zl−1 and α3 = 0 since α3 ∈ Φl−1. Since α does not have
components of negative degrees or of degree 1, neither do α−2 and α−4. To prove (b) we are left
to show that α−2 and α−4 are regular.

We have just seen that the expansion (2.10) for α has form

α = α−4(z1, . . . , zl−2) (zl−1 − zl)−4 + α−2(z1, . . . , zl−1) (zl−1 − zl)−2 +O
(
(zl − zl−1)−1

)
.

Applying ∆∗ to this and using (2.14) we get

0 = ∆∗α =
(
∆∗

2α−4

)
(zl−1 − zl)−4 +

(
∆∗

1α−2

)
(zl−1 − zl)−2 +O

(
(zl − zl−1)−1

)
,

where ∆∗
s = ∆∗(4, . . . , 4) (l − s times), s = 1, 2, which proves regularity of α−2 and α−4.

The proof of (c) is very similar to the proof of Proposition 3.1. Take a partition P=(I1, I2)∈P̄.
We claim that if (α)0(P ) =

∑
j α

′
0,j α

′′
0,j , then α′0,j ∈ R|I1| and α′′0,j ∈ R|I2|. Indeed, we only

need to check that α′0,j ’s and α′′0,j ’s are regular. Denote ∆∗
s =

∑
i∈Is

∆∗(4, zi), s = 1, 2 (see
Section 2.3). Then

0 = ∆∗(α)0(P ) =
∑

j

(∆∗
1α

′
0,j)α

′′
0,j +

∑
j

α′0,j (∆∗
2α

′′
0,j).

Therefore, we see, using induction, that (α)0(P ) is a linear combination of products of indecom-
posable admissible functions. In particular we get (α)0(P ) ∈ Rl.

Let α ∈ Rl. If (α)0(P ) = 0 for every partition P ∈ P2, then α ∈ Rl
0. Otherwise, let P ∈ P2

be the minimal partition for which (α)0(P ) 6= 0. Then the function β = α − (α)0(P ) ∈ Rl will
satisfy (β)0(Q) = 0 for all partitions Q 6 P . By induction, β is a linear combination of products
of indecomposable admissible functions, and hence so is α. �

Remark 3.6. Alternatively, Proposition 3.3c follows from the formula (3.3) in Section 4.6 below.

Remark 3.7. Suppose α ∈ Φl is such that ordij α = −2. If α is regular, then so is ρ(−2)
ij α.

Indeed, applying ∆∗ to

α =
∑

k>−2

(zi − zj)k ρ
(k)
ij α,

we get, using (2.14),

0 = ∆∗α =
∑

k>−2

(zi − zj)k ∆∗(4, . . . , 8 + 2k, . . . , 4) ρ(k)
ij α.

Here 8 + 2k stands at i-th position. The coefficient of (zi − zj)−2 in the right-hand side is
∆∗ρ

(−2)
ij α, which should be equal to 0. In the same way one can check that if ordij α = −4, then

ρ
(−4)
ij α is regular.

Note that for α ∈ Rl and 1 6 i < j 6 l we have ordij α > −4 and ρ(−3)
ij α = 0.

3.5 Admissible functions with prescribed poles

In Section 6 we will need the following property of admissible functions, which is reminiscent of
the Mittag–Leffler’s theorem for analytic functions.
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Proposition 3.4. Let l > 3, and suppose that for each 1 6 i < j 6 l we fix admissible functions
α

(−2)
ij ∈ R(l−1) and α

(−4)
ij ∈ R(l−2) satisfying the following condition: For any 1 6 s < t 6 l,

such that {s, t} ∩ {i, j} = ∅,

ρ
(m)
st α

(k)
ij = ρ

(k)
ij α

(m)
st , m, k = −2,−4. (3.6)

Then there exists a function α ∈ Rl such that ρ(k)
ij α = α

(k)
ij for all 1 6 i < j 6 l and k = −2,−4.

Note the similarity of the condition on α(k)
ij ’s with (2.12).

In order to prove this proposition we need the following Lemma.

Lemma 3.1. Let α ∈ Rl be an admissible function. Then for every 1 6 i 6 l one can write
α =

∑
m αm for some admissible functions αm ∈ Rl that satisfy the following properties:

(i) Either αm = (zi − zj)−4β for some j 6= i, where β ∈ Rl−2, or ordij αm > −2 for all j 6= i
and ∣∣{ j ∈ {1, . . . , l}\{i} ∣∣ ordij αm = −2

}∣∣ 6 2.

(ii) For any 1 6 s < t 6 l, if ordst α > −1, then also ordst αm > −1, and if ordst α = −2,
then ordst αm > −2.

In fact it will follow from the proof that if ordij αm = ordik αm = −2 for some j 6= k, then
αm = (zi − zj)−2(zi − zk)−2(zj − zk)−2β, where β ∈ Rl−3 does not depend on zi, zj , zk. Also,
by Proposition 3.3c we can always assume that αm is a product of indecomposable admissible
functions.

Proof. We use induction on l. If l = 2 (respectively, 3), then α is a multiple of (z1 − z2)−4

(respectively, (z1 − z2)−2(z1 − z3)−2(z2 − z3)−2) and we take α = α1. So assume that l > 4.
To simplify notations, assume that i = 1. We also use induction on the number of multiple

poles of α as z1 − zj , j = 2, . . . , l, counting multiplicity.
Assume first that α has a pole of order 4 at one of z1− zj ’s, which without loss of generality

we can assume to be z1 − z2. Then set

γ = (z1 − z2)−4 ρ
(−4)
12 α.

Obviously, γ ∈ Rl and satisfies (i). Since γ does not have poles at z1 − zj , z2 − zj for j > 3,
and (2.12) implies that ordij γ > ordij α for all 3 6 i < j 6 l, γ satisfies (ii) as well. Therefore,
the function α′ = α− γ ∈ Rl has fewer multiple poles at z1− zj . By induction, α′ =

∑
m α′m for

αm ∈ Rl satisfying (i) and (ii), and hence α = γ +
∑

m α′m.
Now assume that α has a double pole at some z1 − zj , which is again can be taken z1 − z2.

Then set β(z2, . . . , zl) = ρ
(−2)
ij α ∈ Rl−1. By induction, we have β =

∑
m βm, where the functions

βm ∈ Rl−1 satisfy conditions (i) and (ii) for zi = z2. For each βm, we need to consider two cases,
that correspond to the dichotomy of the condition (i):

Case 1. The function βm has a pole of order 4 at some z2− zj for j = 3, . . . , l. Without loss
of generality, we can assume that j = 3. Then βm = (z2 − z3)(−4)β′m for some β′m ∈ Rl−3, and
we set

γm = (z1 − z2)−2(z1 − z3)−2(z2 − z3)−2β′m. (3.7)

Case 2. The function βm has poles of orders at most 2 at all z2−zj for j = 3, . . . , l. Without
loss of generality, we can assume that ord2j βm > 1 for j > 5. The we set

γm = (z1 − z2)−2(z1 − z3)−1(z1 − z4)−1(z2 − z3)(z2 − z4)βm. (3.8)
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We need to show that in both cases the function γm is admissible, satisfies conditions (i)
and (ii) and ρ

(−2)
12 γm = βm. Indeed, assume that these properties of γm are established. Then

set α′ = α −
∑

m γm. Since γm satisfies (ii), and ρ
(−2)
12 α′ = 0, the function α′ will have less

multiple poles in z1 − zj than α, therefore by induction, α′ =
∑

m α′m for α′m ∈ Rl satisfying
conditions (i) and (ii), and we take expansion α =

∑
m γm +

∑
m α′m.

Note that the conditions (i) and ρ(−2)
12 γm = βm are obvious in both cases.

Case 1 is similar to the case when ord12 α = −4. We see that γm is admissible by the
definition. Since ord23 β = −4 and ord12 α = −2, we must have ord13 α 6 −2, which together
with (2.12) establishes the property (ii) for γm.

So assume we are in Case 2. Condition (ii) follows from (2.12) and the fact that the only
multiple pole of γm at z1−zj and z2−zj is at z1−z2. We are left to show that γm is admissible.

As it was mentioned above, we can assume that βm = βm1βm2 · · · is a product of indecom-
posable admissible functions βmt ∈ Rlt ,

∑
t lt = l − 1. Suppose βl1 depends on z2. Then

l1 > 2, since ord23 βm = −2. Since our choice of z3 and z4 was based only on the condition that
ord2j βm > −1 for j 6= 3, 4, we can assume that βm1 depends on z3 and z4. Therefore, in order
to prove that γm is admissible, it is enough to show that if βm is indecomposable admissible,
then so is γm.

So assume that βm ∈ Rl−1
0 . Applying ∆∗ to γm and using (2.14) and the fact that βm is

regular, we see that γm is regular as well. So we are left to verify that for every partition
{1, . . . , l} = I t J we have (γm)n = 0 for n 6 1.

Using Corollary 3.1, we can assume without loss of generality that 1 ∈ I; otherwise we could
swap I and J . Let

(βm)n =
∑

j

(βm)′−n,j (βm)′′n,j

be the component of βm corresponding to partition {2, . . . , l} =
(
I\{1}

)
t J . Since βm ∈ Rl−1

0 ,
we have (βm)n = 0 for n 6 1. We can expand the factor

κ = (z1 − z2)−2(z1 − z3)−1(z1 − z4)−1(z2 − z3)(z2 − z4)

in (3.8) as κ =
∑

s κ′
s κ′′

s , where κ′
s depends on the variables

{
zi
∣∣ i ∈ I ∩ {1, 2, 3, 4}} and κ′′

s

depends on the variables
{
zi
∣∣ i ∈ J ∩ {1, 2, 3, 4}

}
, so that deg κ′′

s > 0. We use here that z1
appears in κ′

s. Then the decomposition (3.1) for γm becomes∑
n,j,s

(
κ′

s (βm)′−n,j

) (
κ′′

s (βm)′′n,j

)
,

therefore, (γm)n = 0 for n 6 1. �

The proof of Proposition 3.4 is very similar to the proof of Lemma 3.1.

Proof of Proposition 3.4. We use induction on the number of non-zero functions among
{α(k)

ij | k = −2,−4, 1 6 i < j 6 l }. If all of them are 0, then take α = 0.

Assume first that some α(−4)
ij 6= 0. To simplify notations, we can take α(−4)

12 6= 0. Then set

γ = (z1 − z2)−4 α
(−4)
12 ∈ Rl.

As before, we see that γ does not have poles at (z1−zj), (z2−zj) for j > 3 and ordij γ > ordij α

for 3 6 i < j 6 l, therefore the collection {α(k)
ij − ρ

(k)
ij γ} has fewer non-zero terms. This



On Griess Algebras 17

collection satisfies the condition (3.6) because of the property (2.12) of the coefficients ρ(k)
ij γ.

By induction, there is a function α′, such that ρ(k)
ij α

′ = α
(k)
ij −ρ(k)

ij γ, and we can take α = α′+γ.

Now assume that α(−4)
ij = 0, but β = α

(−2)
ij 6= 0, for some 1 6 i < j 6 l, which again can

be assumed to be 1 and 2. Then by Lemma 3.1, we can write β(z2, . . . , zl) =
∑

m βm for some
functions βm ∈ Rl−1 satisfying the conditions (i) and (ii) of Lemma 3.1 for zi = z2. Exactly as
in the proof of Lemma 3.1, without loss of generality we can consider two cases for each βm:
when βm has a pole of order 4 at z2 − z3 and when βm might have double poles at z2 − z3 and
z2−z4 but at most simple poles at z2−zj for j > 5. In each of these cases define the function γm

by the formulas (3.7) and (3.8) respectively. As before, we see each γm is admissible, satisfies
the property (ii) of Lemma 3.1 and ρ(−2)

12 γm = βm. Therefore, setting γ =
∑

m γm as before, we
see that the collection {α(k)

ij − ρ
(k)
ij γ} has fewer non-zero terms and satisfies (3.6), so we finish

proof of the Proposition using induction as above. �

4 The coalgebras of correlation functions

4.1 Spaces of correlation functions

Let V =
⊕

d Vd be a vertex algebra with sl2 structure. Assume that it has a set of homogeneous
generators G ⊂ V such that D∗G = 0.

Remark 4.1. The results in this section could be extended to the case when the generators G
are not necessarily minimal, but we do not need this generalization here.

Set T (G) = { a1 ⊗ · · · ⊗ al ∈ V ⊗l | ai ∈ G }. For any a = a1 ⊗ · · · ⊗ al ∈ T (G), consider the
space

V a = Spank
{
a1(n1) · · · al(nl)1

∣∣ ni ∈ Z
}
⊂ V.

Denote V a
d = V a ∩ Vd. The commutativity property of correlation functions (see Section 2.2)

implies that for any permutation σ ∈ Σl and a scalar k ∈ k we have V σa = V ka = V a.
For a tensor a = a1 ⊗ · · · ⊗ al ∈ T (G) and a subsequence I = {i1, i2, . . .} ⊂ {1, . . . , l} define

a(I) = ai1 ⊗ ai2 ⊗ · · · ∈ T (G).
As it was explained in Section 2.2, to any linear functional f : V a

d → k we can correspond
a correlation function αf ∈ Φl of degree d−

∑
i deg ai, such that ordij α > −loc(ai, aj). Let

Ωa =
⊕

d

Ωa
d , Ωa

d = {αf | f : V a
d → k } ⊂ Φl

d−
∑

deg ai

be the space of all such correlation functions, so that (V a
d )∗ ∼= Ωa

d .

Definition 4.1. We will call the space

Ω = Ω(V ) =
⊕

a∈T (G)

Ωa

the vertex coalgebra of correlation functions of a vertex algebra V .

Note that Ω(V ) depends on the choice of generators G, though we supress this dependence
in the notation Ω(V ). Also note that while each homogeneous component Ωa ⊂ Φ|a| consists of
rational functions, the whole space Ω(V ) is not a subspace of Φ.

The coalgebra structure on Ω(V ), similar to the one defined in [13], is manifested in the
following properties, which easily follow from the properties of vertex algebras (see Section 2):
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Ω0. Ω1 = k, Ωa = k[z] for every a ∈ G, and for a = a1 ⊗ · · · ⊗ al ∈ T (G), l > 2.

Ω1. ordij α > −loc(ai, aj) for any α ∈ Ωa.

Ω2. Ωa = σΩσa for any permutation σ ∈ Σl.

Ω3. The space Ωa is closed under the operators ∆ =
∑

i ∂zi and ∆∗ =
∑

i(z
2
i ∂zi +2(deg ai) zi).

Ω4. Set b = a2 ⊗ · · · ⊗ al ∈ T (G). Then any function α ∈ Ωa can be expanded at z1 = ∞ into
a series

α(z1, . . . , zl) =
∑
n>n0

z−n−1
1 αn(z2, . . . zl), (4.1)

where αn ∈ Ωb.

The action of Σl on Ωa in (Ω2) is defined by (σα)(z1. . . . , zl) = α(zσ(1), . . . , zσ(l)), so that
(Ω2) is just the commutativity property of Section 2.2. It implies that the space Ωa for a =
a1 ⊗ · · · ⊗ al ∈ T (G) is symmetric under the group Γa ⊂ Σl generated by all transpositions (i j)
whenever ai = aj .

Note that in order to get the expansion (3.1) of a function α ∈ Ωa, we need to apply
a suitable permutation to the variables z1, . . . , zn, and then iterate the expansion (4.1) several
times. Combining this observation with the property (Ω2), we see that (Ω4) can be reformulated
as follows:

Ω4′. For a partition {1, . . . , l} = I t J , denote a′′ = a(J). Then the component of degree n of
a function α(z1, . . . , zl) ∈ Ωa of degree d−

∑
i deg ai can be written as (α)s =

∑
j α

′
d−n,jα

′′
n,j

so that α′′n,j ∈ Ωa′′ .

4.2 Universal vertex algebras

Now we want to present a converse construction: given a space of functions Ω, satisfying the
conditions (Ω0)–(Ω4), we will construct a vertex algebra V = V (Ω), such that Ω = Ω(V ).

Let G be a set. For any a ∈ G fix its degree deg a ∈ Z, and for any pair a, b ∈ G fix a number
loc(a, b) ∈ Z.

Theorem 4.1. Let Ω =
⊕

a∈T (G) Ωa be a graded space constructed from rational functions as
above, satisfying conditions (Ω0)–(Ω4). Then there exists a vertex algebra

V = V (Ω) =
⊕

λ∈Z+[G]

V λ,

generated by G so that a ∈ Vdeg a, D∗a = 0 for any a ∈ G, such that Ω = Ω(V ) is the vertex
coalgebra of correlation functions of V (see Definition 4.1).

Proof. Let Ωa
d ⊂ Ωa be the subspace of functions of degree d−

∑
i deg ai. The condition (Ω1)

implies that Ωa =
⊕

d Ωa
d so that Ωa

d = 0 when d� 0 and dim Ωa
d <∞.

For each a ∈ T (G) set V a = (Ωa)′ to be the graded dual space of Ωa. We define degree
on V a by setting deg v = d+

∑
i deg ai for v : Ωa

d → k. For a permutation σ ∈ Σl we identify V a

with V σa using (Ω2). In this way for every λ = a1 + · · · + al ∈ Z+[G] we obtain a space
V λ = V a1⊗···⊗al , and set V = V (Ω) =

⊕
λ∈Z+[G] V

λ.
For every λ = a1 + · · ·+ al ∈ Z+[G] choose a basis Bλ

d of V λ
d . Set Bλ =

⋃
d Bλ

d . Let {αu |u ∈
Bλ

d } be the dual basis of Ωa
d , where a = a1⊗· · ·⊗al ∈ T (G), so that degαu = deg u−

∑
i deg ai.

For a permutation σ ∈ Σl the set {σαu |u ∈ Bλ
d } is the basis of Ωσa

d , dual to Bλ
d .
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We choose these bases so that B0 = {1} and α1 = 1 ∈ Ω0 = k. Also, for a generator a ∈ G
of degree d we have dimV a

d = 1, since V a
d = (Ωa

0)
∗ and Ωa

0 = k due to (Ω0). We can identify the
only element of Ba

d with a so that αa = 1 ∈ Ωa
0.

We define the operators D : V λ → V λ and D∗ : V λ → V λ as the duals to ∆ : Ωa → Ωa and
∆∗(2 deg a1, . . . , 2 deg al) : Ωa → Ωa respectively (see Section 2.3). Since ∆∗(2 deg a)Ωa ⊂ zk[z],
we have D∗a = 0 for every a ∈ G.

Now we are going to define vertex algebra structure Y : V → Hom(V, V ((z))) so that for any
λ = a1 + · · ·+ al ∈ Z+[G] we have

Y (a1, z1) · · ·Y (al, zl)1 =
∑

u∈Bλ

αu(z1, . . . , zl)u, (4.2)

Y (a1, z1 + z) · · ·Y (al, zl + z)w = Y
(
Y (a1, z1) · · ·Y (al, zl)1, z

)
w. (4.3)

These identities are to be understood in the following sense. The left-hand side of (4.2) converges
to the V -valued rational function on the right-hand side in the region |z1| > |z2| > · · · > |zl|.
The left and right-hand sides of (4.3) converge to the same V -valued rational function in the
regions |z1 + z| > |z2 + z| > · · · > |zl + z| and |z| > |z1| > |z2| > · · · > |zl| respectively.

Take, as before, λ = a1 + · · · + al ∈ Z+[G] and a = a1 ⊗ · · · ⊗ al ∈ T (G). Let a ∈ G be
a generator of degree d. First we define the action of Y (a, z) on V λ.

For any v ∈ Ba+λ expand the corresponding basic function αv as in (4.1):

αv(z, z1, . . . , zl) =
∑

n

z−n−1 αn(z1, . . . , zl), αn ∈ Ωa.

Expand αn in the basis of Ωa, and get

αv =
∑

u∈Bλ

cuv z
deg v−deg u−d αu (4.4)

for some cuv ∈ k. Now set

Y (a, z)u =
∑

v∈Ba+λ

cuv z
deg v−deg u−d v

for any u ∈ Bλ, and extend it by linearity to the whole V λ.
For example, take λ = 0. Assume that Ba = {a,Da,D2a, . . .}, then αDma = 1

m!z
m ∈ Ωa

m,
and therefore

Y (a, z)1 =
∑
m>0

1
m!

zmDma,

which agrees with the identity (2.2).
It is easy to check that (4.2) is satisfied: Indeed, we have checked that it holds for λ = 0;

assuming that it holds for λ = a1 + · · ·+ al, we compute, using (4.4),

Y (a, z)Y (a1, z1) · · ·Y (al, zl)1 =
∑

u∈Bλ

Y (a, z)u αu(z1, . . . , zl)

=
∑

u∈Bλ, v∈Ba+λ

cuvz
deg v−deg u−d αu(z1, . . . , zl) v

=
∑

v∈Ba+λ

αv(z, z1, . . . , zl) v.

In order to show that the correspondence G 3 a 7→ Y (a, z) ∈ Hom(V, V ((z))) can be extended
to a map Y : V → Hom(V, V ((z))), we need to introduce another property of Ω:
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Ω5. If a = a′ ⊗ a′′ for a′,a′′ ∈ T (G), |a′| = k, |a′′| = l − k, then any function α ∈ Ωa has an
expansion

α(z1 +z, . . . , zk +z, zk+1, . . . , zl) =
∑
n>n0

z−n−1
∑

i

α′ni(z1, . . . , zk)α
′′
ni(zk+1, . . . , zl) (4.5)

at z = ∞, where α′ni ∈ Ωa′ and α′′ni ∈ Ωa′′ . The second sum here is finite.

Note that if k = l, then the expansion (4.5) just the usual Taylor formula

α(z1 + z, . . . , zl + z) = exp(∆z)α(z1, . . . , zl),

since the left-hand side is polynomial in z.

Lemma 4.1. Let Ω =
⊕

a∈T (G) Ωa be a homogeneous space of rational functions, satisfying the
conditions (Ω0)–(Ω4) of Section 4.1. Then it also satisfies (Ω5).

Before proving this lemma, let us show how condition (Ω5) helps to construct the vertex
algebra structure on V , and hence proving Theorem 4.1. Take two weights λ = a1 + · · · + al,
µ = b1 + · · ·+ bk ∈ Z+[G], and define the tensors a = a1⊗ · · ·⊗ al, b = b1⊗ · · ·⊗ bk ∈ T (G). We
are going to define the action of Y (V λ, z) on V µ and then by linearity extend Y to the whole V .

In analogy with deriving (4.4), we obtain from (4.5) that every basic function αv ∈ Ωa⊗b has
expansion

αv(z1 + z, . . . , zl + z, y1, . . . , yk)

=
∑

u∈Bλ, w∈Bµ

cvu,w z
deg v−deg u−deg w αu(z1, . . . zl)αw(y1, . . . , yk), (4.6)

for some cvu,w ∈ k. Now we set for u ∈ Bλ and w ∈ Bµ

Y (u, z)w =
∑

v∈Bλ+µ

cvu,w z
deg v−deg u−deg w v.

To check (4.3), sum (4.6) over all v ∈ Bλ+µ. By (4.2), the left-hand is

Y (a1, z1 + z) · · ·Y (al, zl + z)Y (b1, y1) · · ·Y (bk, yk)1,

whereas the right-hand side is, using the definition of Y (u, z)w and (4.2),∑
u∈Bλ, w∈Bµ

Y (u, z)w αu(z1, . . . , zl)αw(y1, . . . , yk)

= Y
(
Y (a1, z1) · · ·Y (al, zl)1, z

)
Y (b1, y1) · · ·Y (bk, yk)1.

It remains to be seen that the map Y : V → Hom(V, V ((z))) defines a structure of vertex
algebra on V . By the construction, Y satisfies (2.2) and (2.3), and the identity (4.2) guarantees
that the correlation functions for Y satisfy the rationality and commutativity conditions, which,
as it was observed in Section 2.2, are enough for V to be a vertex algebra.

Note also that Y does not depend on the choice of the bases Bλ, since it depends only on the
tensors

∑
u∈Bλ

d
u⊗ αu ∈ V λ

d ⊗ Ωa. �

It is easy to see that the vertex algebra V = V (Ω) has the following universality property:

Proposition 4.1. Let U be a vertex algebra, generated by the set G ⊂ U , such that the coalgebra
of generating functions Ω(U) (given by Definition 4.1) is a subspace of Ω. Then there is a unique
vertex algebra homomorphism V → U that fixes G.

Remark 4.2. In Section 4.1 we have constructed a vertex coalgebra Ω = Ω(V ) of correlation
functions of a vertex algebra V (see Definition 4.1). If we apply the construction of Theorem 4.1
to this Ω, we get V (Ω) =

⊕
λ∈Z+[G] V

λ, which is the graded deformation algebra (a.k.a. the Rees
algebra) of V .
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4.3 Example: Free vertex algebra

Clearly the conditions (Ω0)–(Ω4) are satisfied for

Ωa = {α ∈ Φl | ordij α > −loc(ai, aj) ∀1 6 i < j 6 l }Γa .

By Proposition 4.1, the resulting vertex algebra F = Floc(G) = V (Ω), given by Theorem 4.1,
has the following universal property: any vertex algebra U generated by the set G such that
the locality of any a, b ∈ G is at most loc(a, b), is a homomorphic image of F . Such a vertex
algebra F is called a free vertex algebra. It was constructed in [22, 23] using different methods.

4.4 Proof of Lemma 4.1

Take some α ∈ Ωa
d . As it is the case with any rational function with poles at zi − zj only, α has

an expansion (4.5). We just have to show that α′ni ∈ Ωa′ and α′′ni ∈ Ωa′′ .
First we show that any α′′ni in (4.5) belongs to Ωa′′ . Let α′′(zk+1, . . . , zl) be the coefficient of

some monomial z−n−1z−n1−1
1 · · · z−nk−1

k in (4.5). Clearly, it is enough to show that this α′′ ∈ Ωa′′ .
The idea is that α′′ is a finite linear combination of the coefficients of z−m1−1

1 · · · z−mk−1
k in the

expansion of α in the domain |z1| > · · · > |zl|, which are in Ωa′′ by (Ω4′). While this can be shown
by some manipulations with rational functions, we will use some vertex algebra considerations.

Namely, we are going to use the free vertex algebra F = Floc(G), discussed in Section 4.3.
Since every function α ∈ Φl satisfying (Ω1) is a correlation function on F , there is a linear
functional f : Fa

d → k such that α = αf is the correlation function of f , given by (2.9). By
the associativity property (see Section 2.2), we have that α′′ = αf ′′ is the correlation func-
tion of the functional f ′′ : Fa′′

d′′ → k, given by v 7→ f
(
(a1(n1) · · · ak(nk)1)(n)v

)
, where d′′ = d−

deg(a1(n1) · · · ak(nk)1)(n). Using the identity (2.5), we see that (a1(n1) · · · ak(nk)1)(n) as an op-
erator Fa′′

d′′ → Fa
d can be represented as a linear combination of words u = ai1(m1) · · · aik(mk) ∈

U(F ) for some mi ∈ Z and a permutation σ = (i1, . . . , ik) ∈ Σk. But the correlation function of
the functional v 7→ f(uv) for such u is the coefficient of z−m1−1

i1
· · · z−mk−1

ik
in the expansion of

σα in the domain |zi1 | > · · · > |zik | > |zk+1| > · · · > |zl|, and therefore belongs to Ωa′′ by (Ω4′).

Remark 4.3. Actually, one can show that it suffices to use only words u with σ = 1.

Now we prove that α′ni ∈ Ωa′ . Recall that σΩa = Ωσa for any permutation σ ∈ Σl. Apply the
permutation that reverses the order of variables to (4.5), replace z by −z, and then the above
argument shows that the expansion of α(z1, . . . , zk, zk+1 − z, . . . , zl − z) in z at ∞ has form

α(z1, . . . , zk, zk+1 − z, . . . , zl − z) =
∑
n>n0

z−n−1
∑

i

α̃′ni(z1, . . . , zk) α̃
′′
ni(zk+1, . . . , zl),

where α̃′ni ∈ Ωa′ . Now take another variable w and consider a finite expansion

α(z1 + w, . . . , zl + w) =
∑

j

wjα(j)(z1, . . . , zl),

where α(j) = 1
j!∆

jα ∈ Ωa. Here we use (Ω3) and the fact that ∆ is locally nilpotent on Φl.
Then we have

α(z1 + w, . . . , zk + w, zk+1 + w − z, . . . , zl + w − z)

=
∑

j

wjα(j)(z1, . . . , zk, zk+1 − z, . . . , zl − z)

=
∑
j,n,i

wjz−n−1
(̃
α(j)

)′
ni

(z1, . . . , zk)
(̃
α(j)

)′′
ni

(zk+1, . . . , zl).
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As we have seen,
(
α(j)

)′
ni
∈ Ωa′ . Now substitute w = z in the above, and get that α′ni is a finite

linear combination of
(̃
α(j)

)′
ni

’s. �

4.5 Coalgebras of regular functions

Suppose that we are in the setup of Section 4.2, and that deg a > 0 for any a ∈ G.

Theorem 4.2. Let Ω0 =
⊕

a∈T (G) Ωa
0 , where Ωa

0 ⊂ Φl, be a homogeneous space of functions of
degree −

∑
i deg ai for a = a1⊗· · ·⊗al ∈ T (G). Assume that for any partition {1, . . . , l} = I tJ

the component decomposition (3.1) of a function α ∈ Ωa
0 is

α =
∑
n>0

(α)n, (α)n =
∑

j

α′−n,j α
′′
n,j .

Assume also that

i. Ω1
0 = k;

ii. any α ∈ Ωa
0 is (2 deg a1, . . . , 2 deg al)-regular;

iii. ordij α > −loc(ai, aj) for every 1 6 i < j 6 l;

iv. σΩa
0 = Ωσa

0 for any permutation σ ∈ Σl;

v. for any a1 ∈ G there is a tensor a = a1 ⊗ a2 ⊗ · · · ∈ T (G) such that Ωa
0 6= 0;

vi. α′0,j ∈ Ωa′
0 and α′′0,j ∈ Ωa′′

0 , where a′ = a(I) and a′′ = a(J).

Let Ω be the span of all functions α′′n,j for n > 0, so that α′′n,j ∈ Ωa′′. Then Ω is a vertex
coalgebra in the sense of Definition 4.1 whose degree zero component is Ω0. The corresponding
vertex algebra V = V (Ω), given by Theorem 4.1, is radical-free.

Remark 4.4. Note that the map Ωa
0 → Ω0 ⊗ Ω0 given by

α 7→
∑

ItJ={1,...,l}

∑
j

α′0,j ⊗ α′′0,j (4.7)

makes Ω0 into a coassociative cocommutative coalgebra. The dual structure on V0 is that of an
associative commutative algebra with respect to the product (−1).

Example 4.1. The main example of the coalgebra Ω0 that satisfies the assumptions of Theo-
rem 4.2 is obtained in the following way. In the setup of Section 4.1, suppose that deg ai > 0.
For any a = a1 ⊗ · · · ⊗ al ∈ T (G) define Ωa

0 = {αf | f : V0 → k, f(RadV ) = 0 }. In par-
ticular, taking V to be a free vertex algebra, introduced in Section 4.3, we obtain Ωa

0 being
the space of all regular Γa-symmetric functions α ∈ Φl such that (α)n = 0 for all n < 0, and
ordij α > −loc(ai, aj).

Similarly, setting deg a = 2 for every a ∈ G and loc(ai, aj) = 4, we can take the space
Ωa

0 = (Rl)Γa of all Γa-invariant admissible function (see Section 3.4) as another example of
a family Ωa

0 , satisfying the assumptions of Theorem 4.2.
Another similar example, that we will need in Section 6.3 below, is Ωa

0 = (Sl)Γa , where
Sl ⊂ Rl is the space of admissible functions with only simple poles.

Proof of Theorem 4.2. Condition (Ω0) holds because of (v), and it is easy to see that Ω
satisfies conditions (Ω1), (Ω2) and (Ω4′). In order to show that Ω is indeed the vertex coalgebra
generated by Ω0, we are left to check (Ω3).
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Take a partition {1, . . . , l} = I t J and set

∆′ =
∑
i∈I

∂zi , ∆′′ =
∑
i∈J

∂zi ,

∆∗′ =
∑
i∈I

z2
i ∂zi + (2 deg ai) zi, ∆∗′′ =

∑
i∈J

z2
i ∂zi + (2 deg ai) zi.

For a function α ∈ Ωa
0 , apply ∆ and ∆∗ to the expansion (3.1), and get

0 = ∆α =
∑
n>0

∑
j

(
∆′α′nj

)
α′′nj + α′nj

(
∆′′α′′nj

)
,

0 = ∆∗α =
∑
n>0

∑
j

(
∆∗′α′nj

)
α′′nj + α′nj

(
∆∗′′α′′nj

)
.

From this we deduce that

0 = (∆α)n =
∑

j

(
∆′α′nj

)
α′′nj + α′n+1,j

(
∆′′α′′n+1,j

)
,

0 = (∆∗α)n =
∑

j

(
∆∗′α′nj

)
α′′nj + α′n−1,j

(
∆∗′′α′′n−1,j

)
,

which implies that ∆′α′nj ∈ Span{α′n+1,j}, ∆′′α′′nj ∈ Span{α′′n−1,j}, ∆∗′α′nj ∈ Span{α′n−1,j}, and
∆∗′′α′′nj ∈ Span{α′′n+1,j}.

Now we show that Rad(V ) = 0. First we observe that Rad(V )0 = 0, since the correlation
functions of degree 0 on V being regular implies that D∗V1 = 0. Now assume that there is
a homogeneous element 0 6= v ∈ Rad(V ) of degree n > 0 and weight λ = b1 + · · · + bl for
bi ∈ G. Then there is a functional f : V λ

n → k such that f(v) 6= 0. Let β(z1, . . . , zl) ∈ Ωb
n

for b = b1 ⊗ · · · ⊗ bl be the corresponding correlation function. By the construction of Ω we
can assume that β is the coefficient of some monomial w−m1−1

1 · · ·w−mk−1
k in the power series

expansion of a function α(w1, . . . , wk, z1, . . . , zl) ∈ Ωa⊗b
0 in the domain |w1| > · · · > |wk|, where

a = a1 ⊗ · · · ⊗ ak. But then a1(m1) · · · ak(mk)v 6= 0 in V0, which contradicts to the fact that
v ∈ Rad(V ). �

4.6 The component of degree zero

Suppose G, T (G), loc and Γa for a ∈ T (G) are as in Section 4.1. Here we prove the following
fact:

Theorem 4.3. Assume that for any a ∈ T (G) we are given a space Φa ⊂ Φl, such that the space
Ω0 =

⊕
a∈T (G) Ωa

0 , defined by Ωa
0 = (Φa)Γa, satisfies the assumptions of Theorem 4.2. Assume

also that ΦaΦb ⊂ Φa⊗b for any a, b ∈ T (G). Let V = V (Ω) be the vertex algebra constructed in
Theorem 4.2. Then V0 is isomorphic to a polynomial algebra.

Note that the spaces Ω0 given in Example 4.1 are all obtained in this way.
Before proving this theorem, we need to establish certain property of the algebra V0. We

know that V0 is an associative commutative algebra, graded by weights: V0 =
⊕

λ∈Z+[G] V
λ
0 .

Let X =
⊕

λ6=0 V
λ
0 be the augmentation ideal in V0. Consider the symmetrized tensor product

Sym2
X X =

(
X ⊗X X

)
Σ2

. There is the canonical homomorphism µ : Sym2
X X → X2 defined by

µ(x⊗ y) = xy.

Lemma 4.2. The map µ : Sym2
X X → X2 is an isomorphism.



24 M. Roitman

Proof. Clearly, µ is surjective. To prove that it is also injective, suppose that
∑

i uivi = 0 in
X2 ⊂ V0 for some homogeneous ui, vi ∈ X. We need to show that

∑
i ui ⊗ vi = 0 in Sym2

X X.
The tensor product Sym2

X X is graded by Z+[G]. Therefore, it is enough to check that
f
(∑

i ui ⊗ vi

)
= 0 for any homogeneous linear functional f : Sym2

X X → k. Assume that
wt f = λ = a1+· · ·+al ∈ Z+[G]. For a non-trivial partition P = {P1, P2} ∈ P̄2, set λ′ =

∑
i∈P1

ai

and λ′′ =
∑

i∈P2
ai. Then f can be pulled back to a functional on V λ′

0 ⊗ V λ′′
0 . Since both V λ′

0

and V λ′′
0 are finite-dimensional, we can write this functional as

∑
j f

′
j⊗f ′′j for some f ′j : V λ′

0 → k

and f ′′j : V λ′′
0 → k.

Set a = a1 ⊗ · · · ⊗ al and a′ = a(P1), a′′ = a(P2) as in Section 4.1. Let α′j ∈ Ωa′
0 and

α′′j ∈ Ωa′′
0 be the correlation functions of f ′j and f ′′j respectively. Set

α(P ) =
∑

j

α′j α
′′
j .

Denote Γ = Γa. We claim that the functions α(P ) ∈ Φa for P ∈ P̄2 satisfy the properties of
Proposition 3.1 and also α(σP ) = α(P ) for any σ ∈ Γ.

Note that one of the assumptions of Theorem 4.2 was that (α′)d = (α′′)d = 0 for d < 0,
therefore (α(Q))0(P ) is the leading term in the expansion (3.1) of a function α(Q). The condi-
tion (3.2) follows from the fact that ab⊗ cd = ac⊗ bd in Sym2

X X for every a, b, c, d ∈ X.
So by Proposition 3.1 there exists a function α ∈ Φa such that (α)0(P ) = α(P ) for any

partition P ∈ P̄. Replacing α by |Γ|−1
∑

σ∈Γ σα we can assume that α ∈ Ωa
0 . Then α is

a correlation function of a linear functional h : V λ
0 → k, such that h(uivi) = f(ui ⊗ vi) for any

pair ui, vi. Therefore, f
(∑

i ui ⊗ vi

)
= h

(∑
i uivi

)
= 0. �

Proof of Theorem 4.3. Recall that the augmentation ideal X =
⊕

l>0Xl of V0 is graded,
where

Xl =
⊕

a∈T (G), |a|=l

V a
0 .

For v ∈ Xl we will call l = |v| the length of v. Choose a homogeneous basis X ⊂ X of X
modulo X2. We want to show that V0

∼= k[X ]. Note that we can extend the grading on X to
the grading on k[X ].

Consider the canonical map ϕ : k[X ] → V0, that maps every element x ∈ X into itself. We
need to show that ϕ is an isomorphism. It is easy to see that ϕ is surjective – this follows from
the fact that for fixed length l, we have Xl ∩Xk = 0 for k � 0.

Let X̄ = Xk[X ] be the augmentation ideal of k[X ]. Consider the map ψ : X̄2 → Sym2
X X

that maps a monomial x1 · · ·xk to x1 ⊗ϕ(x2 · · ·xk) for xi ∈ X . Note that the space Sym2
X X is

graded by the length.
The restriction ϕ : X̄i → Xi is an isomorphism for the minimal i, because then Xi = X̄i =

Span{x ∈ X | |x| = i }. Assume we have established that ϕ : X̄i → Xi is an isomorphism for
i 6 l − 1. Then ψ : X̄2

i →
(
Sym2

X X
)
i

is an isomorphism for i 6 l. Combining this with the
isomorphism of Lemma 4.2, we get an isomorphism X̄2

i
∼= X2

i for i 6 l. But if p ∈ X̄l is such
that ϕ(p) = 0, then p ∈ X̄2, since X ∪ {1} is linearly independent modulo X2, therefore we
must have p ≡ 0 and X̄l

∼= Xl. �

5 OZ vertex algebras

5.1 Some notations

Assume we have a vertex algebra V graded as V = V0 ⊕ V2 ⊕ V3 ⊕ · · · . First of all recall (see
Section 2.1) that V0 is an associative commutative algebra under the operation ab = a(−1)b
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and V is a vertex algebra over V0. Indeed, V is a V0-module under the action av = a(−1)v for
a ∈ V0 and v ∈ V , and the identity (V4) of Definition 2.1 implies that this action commutes with
the vertex algebra structure on V . The component V2 is a commutative (but not associative in
general) algebra with respect to the product ab = a(1)b, equipped with an invariant symmetric
bilinear form 〈a | b〉 = a(3)b.

Let A ⊂ V2 be a subspace such that A(3)A ⊆ k1 ⊆ V0 and A(1)A ⊆ A. Set as before
T (A) = { a1 ⊗ · · · ⊗ al ∈ A⊗l | a1, . . . , al ∈ A }. Denote by V ′ the graded dual space of V .

For a tensor a = a1 ⊗ · · · ⊗ al ∈ T (A) and a linear functional f ∈ V ′ let α = αf (z1, . . . , zl)
the correlation function, given by (2.9). Then α ∈ Rl. Indeed, α is regular, since D∗V1 = 0 (see
Section 3.3), has (α)n = 0 for n < 0 or n = 1 because Vn = 0 for these n (see Section 3.1),
has poles of order at most 4 since loc(a, b) = 4 for any a, b ∈ A and has ρ(k)

ij ∈ Rl+k/2 for

k = −2,−4 by the associativity property of correlation functions. Note that ρ(−4)
ij α does not

depend on zi, zj , since ai(3)aj ∈ k1. This defines a map

φ : V ′ ⊗A⊗l → Rl, (5.1)

such that φ(f,a) = σφ(f, σa) for any a ∈ A⊗l, f ∈ V ′ and σ ∈ Σl.
There is an obvious action of the symmetric groups and of k× on T (A). Set S(A) =

T (A)Σ×k× = PT (A)Σ. Denote by Ωa = {φ(f,a) | f ∈ V ′ } ⊂ Rl the space of all correlation
functions corresponding to a.

Recall that for a = a1 ⊗ · · · ⊗ al ∈ T (A) we have considered the space

V a = Spank
{
a1(m1) · · · al(ml)1

∣∣ mi ∈ Z
}
,

so that V a ∼=
(
Ωa
)′. If a = b in S(A), then V a = V b. Set also

V (l) = Spank
{
a1(m1) · · · ak(mk)1

∣∣ ai ∈ A,mi ∈ Z, k 6 l
}
, (5.2)

so that we have a filtration k1 = V (0) ⊆ V (1) ⊆ V (2) ⊆ · · · ⊆ V . Denote V (l)
d = V (l) ∩ Vd.

Let G ⊂ A be a linear basis of A. Then Z+[G] can be identified with a subset of S(A) by
a1 + · · ·+ al = a1 ⊗ · · · ⊗ al for ai ∈ G. Every tensor a ∈ T (A) of length l can be expanded as
a =

∑
i kigi for ki ∈ k and gi ∈ T (G). This implies that

V (l) =
⋃

λ∈Z+[G], |λ|6l

V λ. (5.3)

Next we define the maps r(1)
ij , r

(3)
ij : T (A) → T (A) by

r
(1)
ij a1 ⊗ · · · ⊗ al = a1 ⊗ · · · ⊗ ai−1 ⊗ aiaj ⊗ · · · ⊗ âj ⊗ · · · al,

r
(3)
ij a1 ⊗ · · · ⊗ al = 〈ai | aj〉 a1 ⊗ · · · ⊗ ai−1 ⊗ âi ⊗ · · · ⊗ âj ⊗ · · · al.

It follows from the associativity property of Section 2.2 that

ρ
(−2)
ij φ(f,a) = φ

(
f, r

(1)
ij a

)
, ρ

(−4)
ij φ(f,a) = φ

(
f, r

(3)
ij a

)
(5.4)

for all f ∈ V ′.
Define a partial ordering on T (A) by writing b ≺ a if b = r

(k)
ij a, and taking the transitive

closure.
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5.2 Virasoro element

Now we investigate what happens when an element ω ∈ A ⊂ V2 is a Virasoro element of V (see
Section 2.1). Recall that in this case ω(0)a = Da and ω(1)a = (deg a) a for every homogeneous
a ∈ V , see (2.7), and therefore 1

2ω is an idempotent in the Griess algebra V2.
Consider a tensor a = a1 ⊗ · · · ⊗ al−1 ⊗ ω ∈ T (A), and set

b = r
(1)
il a = 2 a1 ⊗ · · · ⊗ al−1, bi = r

(3)
il a = 〈ω | ai〉 a1 ⊗ · · · ⊗ âi ⊗ · · · ⊗ al−1. (5.5)

Let f ∈ V ′
0 be a linear functional. Denote α(z1, . . . , zl) = φ(f,a), β(z1, . . . , zl−1) = φ(f, b) and

βi(z1, . . . , ẑi, . . . , zl−1) = φ(f, bi).
Define an operator E : Φl−1 → Φl−1 by

E =
l−1∑
i=1

−z−1
i ∂zi + 2z−2

i ,

and let the shift operator T : Φl−1 → Φl be given by T (f(z1, . . . , zl−1)) = f(z1−zl, . . . , zl−1−zl).

Proposition 5.1. Suppose that V is generated by A ⊂ V2 as a vertex algebra. Then an element
ω ∈ A is a Virasoro element of V if and only if

α =
1
2
TEβ +

l−1∑
i=1

(zi − zl)−4βi (5.6)

for every a = a1 ⊗ · · · ⊗ al−1 ⊗ ω ∈ T (A) and f ∈ V ′
0.

Remark 5.1. If 〈ω |ω〉 6= 0, we can choose a basis ω ∈ G ⊂ A so that ω is orthogonal to the
rest of basic elements. Then it is enough to check (5.6) only for a1 ⊗ · · · ⊗ al−1 ∈ T (G), and the
second sum runs over the indices i such that ai = ω.

Proof. If ω ∈ V2 is a Virasoro element, then by (2.15) we have [a(m), ω(−1) ] = (m+1) a(m−
2) + δm,3〈ω | a〉 for any a ∈ A, which implies

[Y (a, z), ω(−1) ] = (2z−2 − z−1∂z)Y (a, z) + 〈ω | a〉 z−41.

Therefore,

α(z1, . . . , zl−1, 0) = f
(
Y (a1, z1) · · ·Y (al−1, zl−1)ω(−1)1

)
= Ef

(
Y (a1, z1) · · ·Y (al−1, zl−1)1

)
+

l−1∑
i=1

〈ω | ai〉 z−4
i f

(
Y (a1, z1) · · · ̂Y (ai, zi) · · ·Y (al−1, zl−1)1

)
=

1
2
Eβ(z1, . . . , zl−1) +

l−1∑
i=1

z−4
i βi(z1, . . . , ẑi, . . . , zl−1),

and we get (5.6) since α(z1, . . . , zl) = α(z1 − zl, . . . , zl−1 − zl, 0) by Proposition 3.2.
Conversely, in order to see that ω ∈ A is a Virasoro element, we need to show that adω(1) :

U(V ) → U(V ) is the grading derivation and adω(0) : U(V ) → U(V ) coincides with D. Since A
generates V as a vertex algebra, the operators a(n) for a ∈ A, n ∈ Z, generate U(V ) as an
associative algebra, and therefore it is enough to verify commutation relations between ω(m)
and a(n) for m = 0, 1 and n ∈ Z. Using (2.15) this amounts to checking the identities

ω(0)a = Da and ω(1)a = 2a
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for any a ∈ A. Note that we also have ω(2)a = 0 since V2 = 0 and ω(3)a = 〈ω | a〉1 since ω ∈ A.
Using (2.4), these identities are equivalent to

a(0)ω = Da, a(1)ω = 2a, ∀ a ∈ A. (5.7)

Setting al−1 = a and zl−1 = z we expand

α(z1, . . . , zl−1, 0) =
∑
n>0

z−4+nαn(z1, . . . , zl−2),

where αn = f
(
Y (a1, z1) · · ·Y (al−2, zl−2) a(3− n)ω

)
. It follows that (5.7) is equivalent to

α2(z1, . . . , zl−2) = f
(
Y (a1, z1) · · ·Y (al−2, zl−2) a(1)ω

)
= 2f

(
Y (a1, z1) · · ·Y (al−2, zl−2) a

)
= β(z1, . . . , zl−2, 0),

α3(z1, . . . , zl−2) = f
(
Y (a1, z1) · · ·Y (al−2, zl−2) a(0)ω

)
= f

(
Y (a1, z1) · · ·Y (al−2, zl−2)Da

)
=

1
2
∂β

∂zl−1

∣∣∣
zl−1=0

,

which easy follows from (5.6). �

5.3 The operator E

In this section we show that the operator E preserves the property of being admissible (see
Section 3.4).

Proposition 5.2. For an admissible function β ∈ Rl−1, l > 3, set α = TEβ.

a. For any 1 6 i < l we have

ρ
(−1)
il α = −∂ziβ, ρ

(−2)
il α = 2β

and ρ(k)
il α = 0 for k < −2.

b. For any 1 6 i < j < l we have

ρ
(−2)
ij α = TEρ(−2)

ij β + 2(zj − zl)−4ρ
(−4)
ij β, ρ

(−4)
ij α = TEρ(−4)

ij β

and ρ(k)
ij α = 0 for k < −4.

c. α ∈ Rl.

Proof. (a) Since β and ∂ziβ are translation-invariant, we have

TEβ =
l−1∑
i=1

(
− (zi − zl)−1∂zi + 2(zi − zl)−2

)
β(z1, . . . , zl−1),

therefore

α = 2(zi − zl)−2β − (zi − zl)−1∂ziβ +O
(
(zi − zl)0

)
.

(b) Assume for simplicity that i = 1 and j = 2. Expand

β = (z1 − z2)−4β−4(z3, . . . , zl−1) + (z1 − z2)−2β−2(z2, . . . , zl−1) + · · · .
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Using that [E , z1 − z2 ] = z−1
1 z−1

2 (z1 − z2), we get

E(z1 − z2)k = (z1 − z2)k(E + k z−1
1 z−1

2 ).

So we compute

E(z1 − z2)−2β−2 = (z1 − z2)−2
(
E ′ + 2z−2

1 − 2z−1
1 z−1

2

)
β−2

= (z1 − z2)−2E ′β−2 +O
(
(z1 − z2)−1

)
,

E(z1 − z2)−4β−4 = (z1 − z2)−4
(
E ′′ + 2z−2

1 + 2z−2
2 − 4z−1

1 z−1
2

)
β−4

= (z1 − z2)−4E ′′β−4 + 2(z1 − z2)−2z−4
2 β−4 +O

(
(z1 − z2)−1

)
,

where E ′ =
∑l−1

i=2 z
−1
1 ∂z1 − 2z−2

1 , E ′′ =
∑l−1

i=3 z
−1
1 ∂z1 − 2z−2

1 .

(c) First we show that α is regular. Set ∆∗
1 =

∑l−1
i=1 z

2
i ∂zi + 4zi and ∆∗ = ∆∗

1 + z2
l ∂zl

+ 4zl.
It is enough to check that ∆∗

1(Eβ)(z1, . . . , zl−1) = 0. Indeed, in this case set wi = zi − zl for
1 6 i 6 l − 1, and get

∆∗T (Eβ) =

(( l−1∑
i=1

z2
i ∂wi + 4zi

)
−
( l−1∑

i=1

z2
l ∂wi

)
+ 4zl

)
Eβ(w1, . . . , wl−1)

=

(
∆∗

1 + zl

(
4l + 2

l−1∑
i=1

wi∂wi

))
Eβ(w1, . . . , wl−1)

= (4l + 2 deg Eβ) zl Eβ(w1, . . . , wl−1) = 0,

since deg Eβ = deg β−2 = −2l. So we compute [z2∂z+4z, −z−2∂z+2z ] = 3∂z, hence [∆∗
1, E ] =

3
∑l−1

i=1 ∂zi, and therefore, using Proposition 3.2, we get ∆∗
1Eβ = E∆∗

1β + 3
∑

i ∂ziβ = 0.
In order to finish the proof of (c) we need only to show that for every partition {1, . . . , l} =

I t J the expansion (3.1) of α has form

α = (α)0 +
∑
n>2

(α)n

so that (α)0 =
∑

j α
′
0,j α

′′
0,j for α′0,j ∈ R|I| and α′′0,j ∈ R|J |.

We prove this statement by induction on l. If l = 3, then β = k(z1 − z2)−4 for k ∈ k and
then α = 2k (z1− z2)−2(z1− z3)−2(z2− z3)−2 ∈ R3 and the statements (a) and (b) are obviously
true. So assume that l > 4.

Without loss of generality we can assume that l ∈ J . Write the expansion (3.1) for β as
β = (β)0 +

∑
n>2(β)n where (β)n =

∑
j β

′
n,j β

′′
n,j . Note that both (β)0 and

∑
n>2(β)n are

admissible. Then

α =
∑

n>0, n6=1

TE(β)n =
∑
n,j

(
TE ′β′n,j

)
β′′n,j + β′n,j

(
TE ′′β′′n,j

)
,

where E ′ =
∑

i∈I −z
−1
i ∂zi + 2z−2

i and E ′′ =
∑

i∈J\{l}−z
−1
i ∂zi + 2z−2

i . By induction, TE ′β′0,j ∈
R|I|+1 and TE ′′β′′0,j ∈ R|I|, therefore TE(β)0 ∈ Rl.

We are left to show that
(
TE(β)n

)
m

= 0 for n > 2 and m 6 1. Observe that TE ′β′n,j does
not have pole at zl, therefore((

TE ′β′n,j

)
β′′n,j

)
m

= 0

for m < n, and the claim follows. �
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5.4 Explicit formulae for Ωa
0 for small a

Let a = a1⊗· · ·⊗al ∈ T (A). It follows from (5.4) that if f : V a
0 → k is such that f(V (l−1)) = 0,

then the corresponding correlation function φ(f,a) ∈ Ωa
0 has only simple poles. The smallest

such function is∏
16i<j65

(zi − zj)−1 ∈ R5,

therefore for l 6 4 the space of correlation functions Ωa
0 has dimension 1. We have Ω1

0 = k,
Ωa

0 = 0, and for l = 2, 3, 4, Ωa
0 = kα, where α is as follows:

l = 2 : α = 〈a1 | a2〉 (z1 − z2)−4

l = 3 : α = 〈a1 | a2a3〉 (z1 − z2)−2(z1 − z3)−2(z2 − z3)−2

l = 4 : α = 〈a1 | a2〉〈a3 | a4〉 (z1 − z2)−4(z3 − z4)−4

+ 〈a1 | a3〉〈a2 | a4〉 (z1 − z3)−4(z2 − z4)−4

+ 〈a1 | a4〉〈a2 | a3〉 (z1 − z4)−4(z2 − z3)−4

+ 〈a1a2 | a3a4〉 (z1 − z2)−2(z3 − z4)−2(z1 − z3)−1(z1 − z4)−1(z2 − z3)−1(z2 − z4)−1

+ 〈a1a3 | a2a4〉 (z1 − z3)−2(z2 − z4)−2(z1 − z2)−1(z1 − z4)−1(z2 − z3)−1(z3 − z4)−1

+ 〈a1a4 | a2a3〉 (z1 − z4)−2(z2 − z3)−2(z1 − z2)−1(z1 − z3)−1(z2 − z4)−1(z3 − z4)−1.

6 The algebra B

Now let A be a commutative algebra with a symmetric invariant bilinear form 〈· | ·〉. Denote by
AutA its the group of automorphisms, i.e. the linear maps that preserve the product and the
form on A. In this section we prove the following theorem:

Theorem 6.1. There exists a vertex algebra B = B0 ⊕B2 ⊕B3 ⊕ · · · , generated by A ⊂ B2, so
that

a. a(1)b = ab and a(3)b = 〈a | b〉 for any a, b ∈ A;

b. if 1
2ω ∈ A is a unit of A, then ω is a Virasoro element of B;

c. AutA ⊂ AutB.

d. If dimA = 1 or, if A has a unit 1
2ω, dimA/kω = 1, then B0 = k; otherwise, B0 is

isomorphic to the polynomial algebra in infinitely many variables.

Remark 6.1. In fact one can show that the vertex algebra B can be obtained as B = B̂/Rad B̂,
where B̂ is the vertex algebra generated by the space A subject to relations (a) of Theorem 6.1
and condition B̂1 = 0.

Before constructing the algebra B and proving Theorem 6.1, let us show how it implies the
main result of this paper.

6.1 Proof of Theorem 1.1

Assume that the form 〈· | ·〉 on A is non-degenerate. Take an arbitrary algebra homomorphism
χ : B0 → k. If a finite group of automorphisms G ⊂ AutA was specified, choose χ to be G-
symmetric. (Here we use that chark = 0.) By Proposition 2.1, χ defines a k-valued symmetric
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bilinear form 〈· | ·〉χ on B, such that 〈a | b〉χ = χ
(
a(−1)∗b

)
. It is easy to see that the form 〈· | ·〉χ

coincides with the form 〈· | ·〉 on A. Indeed, for a, b ∈ A we have, using that χ(1) = 1,

〈a | b〉χ = χ
(
a(−1)∗b

)
= a(3)b χ(1) = 〈a | b〉.

Since χ is multiplicative, we have Kerχ ⊂ Rad〈· | ·〉χ. Now we set

V = B/Rad〈· | ·〉χ.

Since V0 = k1, Proposition 2.2c implies that V is simple. This proves Theorem 1.1a, whereas
(b) and (c) of Theorem 1.1 follow from (b) and (c) of Theorem 6.1.

6.2 Constructing B0

Let us fix a linear basis G of A, such that if A has a unit 1
2ω, then ω ∈ G. First we construct

the spaces

k1 = B
(0)
0 ⊆ B

(1)
0 ⊆ · · · ⊆ B0, (6.1)

defined by (5.2). Recall that T (A) = { a1⊗a2⊗· · · | ai ∈ A } ⊂
⊕

l>1A
⊗l and S(A) = T (A)Σ×k× .

For any a ∈ T (A) of length |a| 6 l we will construct a subspace Ba
0 ⊂ B

(l)
0 and the dual space

of admissible correlation functions
(
Ba

0

)∗ = Ωa
0 ⊂ Rl, so that the following properties will hold:

B1. Ba
0 = Bb

0 if a = b in S(A).

B2. Bb
0 ⊆ Ba

0 whenever b ≺ a.

B3. There is a map

φ :
(
Ba

0

)∗ ⊗A⊗l → Ωa
0 ,

for a ∈ T (A), |a| = l, satisfying (5.4) and φ(f,a) = σφ(f, σa) for any permutation σ ∈ Σl.

B4. If 1
2ω ∈ A is a unit, then for any b ∈ T (A), |b| = l − 1, a = b ⊗ ω, bi = r

(3)
ij a and

f : B(l) → k,

φ(f,a) = TEφ(f, b) +
l−1∑
i=1

(zi − zl)−4φ(f, bi).

B5. B(l)
0 /B

(l−1)
0 =

⊕
λ∈Z+[G\{ω}]

Bλ
0 /B

(l−1)
0 .

In addition we want Ωa
0 to satisfy the conditions (i)–(vi) of Theorem 4.2.

The map φ in (B3) is going to be the same as in (5.1). As in Section 4.1, the condition (B3)
implies that Ωa ⊂ RΓa . The condition (B4) is the same as in Proposition 5.1. The property (B1)
justifies the notation Bλ

0 = Ba
0 used in (B5), whenever λ = g1 + · · · + gl ∈ Z+[G] and a =

g1 ⊗ · · · ⊗ gl ∈ T (G). The property (B5) is a special case of (5.3).
We are constructing B(l)

0 by induction on l, starting from B
(0)
0 = k1 and Ω1

0 = k. Assume
that B(m)

0 , Ωa
0 and φ :

(
B

(m)
0

)∗ ⊗A⊗m → Rm are already constructed for m = |a| 6 l − 1.
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Constructing Ωg
0

Take a basic tensor g = g1⊗ · · ·⊗ gl ∈ T (G). We define the space Ωg
0 ⊂ Rl in the following way:

If gi 6= ω for all 1 6 i 6 l, then set

Ωg
0 =

{
α ∈ (Rl)Γg

∣∣∣∣∣ ∃f : B(l−1)
0 → k s. t. ρ

(−k−1)
ij α = φ

(
f, r

(k)
ij g

)
∀ 1 6 i < j 6 l, k = 1 or 3

}
.

It is not clear a priori why Ωg
0 6= 0. This is a part of the statement of Proposition 6.1 below. Note

also that by fixing some 0 6= α ∈ Ωg
0 , the space Ωg

0 can be described as the space of functions
that differ from α by an admissible Γg-symmetric function with only simple poles.

If gl = ω, then set b = r
(1)
il g, bi = r

(3)
il g ∈ T (G) as in (5.5), and then define Ωg

0 to be set of
all functions α ∈ Rl given by (5.6), where β = φl−1(f, b), βi = φl−2(f, bi) for all f : B(l−1)

0 → k.
Note that α ∈ Rl due to Proposition 5.2c.

Finally, if gi = ω for some 1 6 i 6 l − 1, then set

Ωg
0 = (i l)Ω(i l)g

0 ,

for the transposition (i l) ∈ Σl.
It is immediately clear that for any permutation σ ∈ Σl we have

Ωg
0 = σΩσg

0 . (6.2)

The following proposition gives another crucial property of the functions Ωg
0 .

Proposition 6.1. For any linear functional f : B(l−1)
0 → k and any tensor g = g1 ⊗ · · · ⊗ gl ∈

T (G) there is a function α ∈ Ωg
0 such that ρ(−k−1)

ij α = φ(f, r(k)
ij g).

Proof. In the case when g does not contain ω, Proposition 3.4 guarantees that there exists
an admissible function α ∈ Rl such that ρ(−k−1)

ij α = φ(f, r(k)
ij g), since the functions α(k)

ij =

φ(f, r(−k−1)
ij g) obviously satisfy the condition (3.6). Now take |Γg|−1

∑
σ∈Γg

σα ∈ Ωg
0 .

Now suppose that g contains ω. Using (6.2), we can assume without loss of generality, that
g = a1 ⊗ · · · ⊗ al−1 ⊗ ω. Let b = r

(1)
il g and bs = r

(3)
sl g for 1 6 s < l as in (5.5), and set

β = φ(f, b), βs = φ(f, bs). Then α = φ(f, g) ∈ Ωg
0 is defined by (5.6). By Proposition 5.2a, we

get ρ(−2)
il α = β and ρ(−4)

il α = βi for all 1 6 i < l.
Now consider the case when 1 6 i < j < l. Applying ρ

(−4)
ij to (5.6) and using

Proposition 5.2b, we get

ρ
(−4)
ij α = TEρ(−4)

ij β +
∑
s 6=i,j

(zs − zl)−4 ρ
(−4)
ij βs = φ(f, r(3)ij g).

To do the same with ρ(−2)
ij we notice that

r
(3)
jl r

(1)
ij g = r

(3)
ij b.

Indeed, assuming that i, j = 1, 2 to simplify notations, we get

r
(3)
2l r

(1)
12 g = r

(3)
2l (a1a2)⊗ a3 ⊗ · · · ⊗ al−1 ⊗ ω

= 〈ω | a1a2〉 a3 ⊗ · · · ⊗ al−1 = 2〈a1 | a2〉 a3 ⊗ · · · ⊗ al−1 = r
(3)
12 b.

Now we apply ρ(−2)
ij to (5.6) and compute, using Proposition 5.2b,

ρ
(−2)
ij α = TEρ(−2)

ij β + (zj − zl)−4ρ
(−4)
ij β +

∑
s 6=i,j

(zs − zl)−4 ρ
(−2)
ij βs = φ(f, r(1)ij g). �
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Constructing B
(l)
0

For g ∈ T (G) set Bg
0 =

(
Ωg

0

)∗. For a permutation σ ∈ Σl we identify Bg
0 with Bσg

0 by setting
(b, α) = (b, σ−1α) for b ∈ Bσg

0 and α ∈ Ωg
0 , since σ−1α ∈ Ωσg by (6.2). Thus for a weight

λ = g1 + · · ·+ gl ∈ Z+[G] we can denote Bλ
0 = Bg

0 , where g = g1 ⊗ · · · ⊗ gl ∈ T (G).
By the construction, for any function α ∈ Ωg

0 there is a linear functional f : B(l−1)
0 → k such

that ρ(m)
ij α = φ

(
f, r

(−m−1)
ij g

)
for all 1 6 i < j 6 l and m = −2,−4. Take a tensor g � a ∈ T (A).

There is a map ρga : Ωg
0 → Ωa

0 , which is an iteration of the maps ρ(m)
ij , so that

ρgaα = φ(f,a). (6.3)

We note that the restriction of f on Ba
0 is uniquely defined by α, so ρga is well defined by (6.3).

By Proposition 6.1, the map ρga : Ωg
0 → Ωa

0 is surjective, therefore we have an embedding
ρ∗ga : Ba

0 ↪→ Bg
0 . Set

B
(l)
0 =

(
B

(l−1)
0 ⊕

⊕
λ∈Z+[G]
|λ|=l

Bλ
0

)/
Span

{
a− ρ∗gaa

∣∣∣ a ∈ Ba
0 , T (G) 3 g � a ∈ T (A)

}
. (6.4)

In other words, we identify the space Ba
0 ⊂ B

(l−1)
0 with the subspace ρ∗ga(Ba

0 ) ⊂ Bg
0 for g � a ∈

T (A). So we have B(l−1)
0 ⊂ B

(l)
0 and Bλ

0 ⊂ B
(l)
0 for any λ ∈ Z+[G] of length l.

For g ∈ T (G), |g| = l, we define the map φ( · , g) :
(
B

(l)
0

)∗ → Ωg
0 ⊂ Rl in the following

way. Since
(
Bg

0

)∗ ∼= Ωg
0 , the restriction of a functional f : B(l)

0 → k to Bg
0 can be identified

with a function in Ωg
0 , and we set φ(f, g) = f

∣∣
Bg

0
. Then we extend φ by linearity to the map

φ :
(
B

(l)
0

)∗ ⊗A⊗l → Rl.

Verif ication of (B1)–(B5)

The properties (B1) and (B3) are clear. For a tensor a ∈ T (A), |a| = l, consider the restriction
φ( · ,a) :

(
B

(l)
0

)∗ → Rl. Denote its image by Ωa
0 ⊂ Rl. The the dual map φ( · ,a)∗ : Ba

0 → B
(l)
0

is an embedding of the dual space Ba
0 =

(
Ωa

0

)∗ into B(l)
0 . This establishes (B2).

If a ∈ T (A) ends by ω, and b and bi are defined as in (5.5), then any function α ∈ Ωa is
uniquely defined by its coefficients ρ(−2)

il α = β ∈ Ωb and ρ(−4)
il α = βi ∈ Ωbi by the formula (5.6).

This implies (B4). Note also that in this case

Ba ⊆ Bb +Bb1 + · · ·+Bbl−1 ⊂ B(l−1).

The condition (B5) follows from (6.4).

Verif ication of conditions (i)–(vi) of Theorem 4.2

The only conditions of Theorem 4.2 that require verification are (v) and (vi). If we assume that
the form 〈· | ·〉 on A is non-degenerate, then for any a ∈ G there is b ∈ G such that 〈a | b〉 6= 0,
and then Ωa⊗b

0 = k (z1 − z2)−4 6= 0, which proves (v). Another argument, that does not use
non-degeneracy of 〈· | ·〉, can be found in the proof of Theorem 6.1d in Section 6.3 below.

To prove (vi), consider a partition {1, . . . , l} = I t J and set a′ = a(I), a′′ = a(J) ∈ T (G)
(in the notations of Section 4.1). Since α ∈ Rl, we have (α)n =

∑
j α

′
−n,j α

′′
n,j = 0 for n < 0 or

n = 1 by Definition 3.2, and α′0,j , α
′′
0,j are admissible by Proposition 3.3c. Denote b = r

(k)
ij a and
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b′ = b(I). To show that α′0,j ∈ Ωa′
0 we need to show that ρ(−k−1)

ij α′0,j ∈ Ωb′
0 , for any i, j ∈ I and

k = 1 or 3. But this follows from (vi) applied to ρ(−k−1)
ij α, since we obviously have(

ρ
(−k−1)
ij α

)
0

=
∑

s

(
ρ
(−k−1)
ij α′0,j

)
(α′′0,j).

Similarly, we check that α′′0,j ∈ Ωa′′
0 .

6.3 Proof of Theorem 6.1

We apply Theorem 4.2 to the space of functions Ω0 constructed in Section 6.2, and obtain
a vertex algebra

B̂ =
⊕

n>0, n6=1

B̂n, B̂n =
⊕

λ∈Z+[G]

B̂λ
n.

Note that we have B̂1 = 0 due to the fact that Ω0 consists of admissible functions which do not
have components of degree 1, see Definition 3.2.

From the construction of B0 we see that B̂λ
0 = Bλ

0 for any λ ∈ Z+[G]. Recall that B̂0 is the
associative commutative algebra, dual to the coalgebra Ω0 with respect to the coproduct (4.7).
But then B0 is also an associative commutative algebra, since Bλ

0 ⊂ B0, and we have a surjective
algebra homomorphism π : B̂0 → B0. Its kernel Kerπ is an ideal in B̂0, which by Proposition 2.2c
can be extended to an ideal Kerπ ⊂ B̂. So we finally set

B = B̂/Kerπ.

The condition (a) holds by the construction: indeed, given a = a1⊗a2⊗a3⊗· · · ∈ T (A), and
a correlation function α ∈ Ωa, the coefficient ρ(−2)

12 α is the correlation function corresponding
to (a1a2)⊗ a3 ⊗ · · · , but by the associativity condition of Section 2.2 it must be the correlation
function for

(
a1(1)a2

)
⊗ a3 ⊗ · · · , which implies that a1(1)a2 = a1a2. The equality a1(3)a2 =

〈a1 | a2〉 is established in the same way.
If 1

2ω ∈ A is a unit, then any correlation function α ∈ Ωa⊗ω
0 is given by the formula (5.6),

therefore, ω is a Virasoro element by Proposition 5.1, thus proving (b). Note also that the
construction of B was canonical, which establishes (c).

Proof of Theorem 6.1d

We need to introduce another vertex algebra. Let F = V (Ω(F )) be the vertex algebra obtained
by the construction of Theorem 4.2 from the space of functions

Ω(F )0 =
⊕

g∈T (G\{ω})

Ω(F )g
0 ,

where Ω(F )g
0 = (Sl)Γg is the space of Γg-symmetric admissible functions with only simple poles

(see Example 4.1). By Theorem 4.3 the algebra F0 is polynomial. Note that the algebra F is
what Theorem 6.1 would yield if instead of A one would take the space Span

{
G\{ω}

}
with zero

product and form.
On the other hand, the vertex algebra B inherits a filtration (6.1) from B0. Consider the

associated graded algebra grB =
⊕

l>1B
(l)/B(l−1). This is indeed a vertex algebra, since all

vertex algebra identities (see Definition 2.1) are homogeneous. By (B5) we have

grB =
⊕

λ∈Z+[G\{ω}]

(grB)λ.
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From the construction in Section 6.2 it follows that the coalgebra of correlation functions
Ω(grB)0 is the same as Ω(F )0, therefore Ω(grB) = Ω(F ) and hence by Proposition 4.1 there is
a vertex algebra isomorphism η : (grB) → F , which yields algebra isomorphism η0 : (grB)0 =
gr(B0) → F0. But since a polynomial algebra cannot have non-trivial deformations, we must
have B0

∼= F0 as associative commutative algebras.
We are left with estimating the size of F0. Take some g = a1 ⊗ · · · ⊗ al ∈ T (G\{ω}) and let

Γ = Γg. A function α ∈ Ωg
0 = (Sl)Γ can have a pole at zi − zj only if ai 6= aj . Therefore, since

degα = −2l, if G has no more than one element other than ω, then (Sl)Γ = 0 for l > 0, and
hence F0 = k.

Now assume that G has at least two elements other then ω, say a and b. Denote by Sl
0 ⊂ Sl

the space of indecomposable admissible functions with only simple poles. Then the span of the
generators of degree g of F0 is isomorphic to (Sl

0)
Γ. We claim that for l large enough there is

g ∈ T (G\{ω}), |g| = l, such that the (Sl
0)

Γ 6= 0. This would imply that F0 is a polynomial
algebra in infinitely many variables.

Indeed, there are infinitely many bipartite 4-regular connected graphs that remain connected
after a removal of any two edges. Let G be such a graph with vertices u1, . . . , uk, vk+1, . . . , vl,
so that an edge can only connect some ui with some vj . The incidence matrix of this graph
is an l × l symmetric regular matrix S = {sij}l

i,j=1 (see Example 3.1), defined so that sij = −1
whenever G has an edge connecting ui and vj for some 1 6 i 6 k < j 6 l, the rest of the entries
being 0. Then

0 6= |Γ|−1
∑
σ∈Γ

σπ(S) ∈ (Sl
0)

Γ = Ωg
0 ,

where π(S) is as in (3.4) and g = a⊗ · · · ⊗ a⊗ b⊗ · · · ⊗ b.
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