|
SIGMA 1 (2005), 022, 12 pages nlin.SI/0511058
https://doi.org/10.3842/SIGMA.2005.022
Noether Symmetries and Critical Exponents
Yuri Bozhkov
Departamento de Matemática Aplicada - DMA, Instituto de Matemática,
Estatistica e Computação Cientí fica - IMECC, Universidade
Estadual de Campinas - UNICAMP, C.P. 6065, 13083-970 - Campinas - SP, Brasil
Received October 03, 2005, in final form November
19, 2005; Published online November 25, 2005
Abstract
We show that all Lie point symmetries of various classes
of nonlinear differential equations involving critical
nonlinearities are variational/divergence symmetries.
Key words:
divergence symmetry; critical exponents.
pdf (229 kb)
ps (158 kb)
tex (14 kb)
References
- Bluman G.W., Kumei S., Symmetries and differential
equations, New York, Springer, 1989.
- Bratu G., Sur les équationes intégrales non
linéares, Bull. Soc. Math. de France, 1914, V.42,
113-142.
- Bozhkov Y.D., Divergence symmetries of semilinear
polyharmonic equations involving critical nonlinearities,
submitted.
- Bozhkov Y.D., Gilli Martins A.C., On
the symmetry group of a differential equation and the
Liouville-Gelfand problem, Rend. Istit. Mat. Univ.
Trieste, 2002, V.34, 103-120.
- Bozhkov Y.D., Gilli Martins A.C., Lie
point symmetries and exact solutions of quasilinear differential
equations with critical exponents, Nonlinear Anal., 2004,
V.57, N 5-6, 773-793.
- Bozhkov Y.D., Gilli Martins A.C., Lie
point symmetries of the Lane-Emden system, J. Math. Anal.
Appl., V.294, 2004, 334-344.
- Clément P., de Figueiredo D.G. , Mitidieri E., Quasilinear
elliptic equations with critical exponents, Topol. Methods
Nonlinear Anal., 1996, V.7, 133-164.
- Gelfand I.M., Some problems in the theory of
quasilinear equations, Amer. Math. Soc. Transl., 1963,
V.29, 295-381.
- Gidas B., Spruck J., Global and local behaviour of
positive solutions of nonlinear elliptic equations, Comm.
Pure Appl. Math., 1981, V.34, 525-598.
- Gidas B., Ni W., Nirenberg L., Symmetry and
related problems via maximum principle, Comm. Math. Phys.,
1979, V.68, 209-243.
- Hulshof J., van der Vorst R.C.A.M., Assymptotic
behavior of ground states, Proc. Amer. Math. Soc., 1996,
V.124, 2423-2431.
- Lions P.L., The concentration-compactness principle
in the calculus of variations, part 1, Rev. Mat. Iberoam.,
1985, V.1, 145-201.
- Mitidieri E., A Relich type identity and
applications, Commun. Partial Differential Equations, 1993,
V.18, 125-151.
- Mitidieri E., Private communication, January 1995.
- Mitidieri E., Nonexistence of positive solutions of
semilinear elliptic systems in RN, Differential
Integral Equations, 1996, V.9, 465-479.
- Mitidieri E., Private communication, January 2002.
- Olver P.J., Applications of Lie groups to differential equations,
New York, Springer, 1986.
- Serrin J., Zou H., Non-existence of positive
solutions of semilinear elliptic systems, Discourses in
Mathematics and its Applications, Vol. 3, Department of
Mathematics, Texas A&M University, College Station, Texas, 1994,
55-68.
- Serrin J., Zou H., Non-existence of positive
solutions of the Lane-Emden systems, Differential Integral
Equations, 1996, V.9, 635-653.
- Serrin J., Zou H., Existence of positive solutions
of the Lane-Emden systems, Atti Sem. Mat. Fis. Univ.
Modena, 1998, V.46, suppl., 369-380.
- Svirshchevskii S.R., Symmetry of nonlinear elliptic
equations with critical values of parameters, Preprint 118,
Moscow, Keldysh Institute of Applied Mathematics, Academy of Sciences
USSR, 1989.
- Svirshchevskii S.R., Symmetries of nonlinear
polyharmonic equations, Preprint 11, Moscow, Institute of
Mathematical Modelling, Academy of Sciences USSR, 1993.
- Svirshchevskii S.R., Group classification of
nonlinear polyharmonic equations and their invariant solutions,
Diff. Equations, 1993, V.29, 1538-1547 (in Russian:
Diferentsial'nye Uravneniya, 1993, V.29, N 10, 1772-1781).
|
|