|
SIGMA 1 (2005), 019, 17 pages math-ph/0511081
https://doi.org/10.3842/SIGMA.2005.019
Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
Alexey Borisov a, Alexander Shapovalov a, b, c and Andrey Trifonov b, c
a) Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
b) Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
c) Math. Phys. Laboratory, Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
Received July 27, 2005, in final form November 13, 2005; Published online November 22, 2005
Abstract
The Gross-Pitaevskii equation with a local cubic
nonlinearity that describes a many-dimensional system in an
external field is considered in the framework of the complex
WKB-Maslov method. Analytic asymptotic solutions are
constructed in semiclassical approximation in a small parameter
h, h -> 0, in the class of functions concentrated in
the neighborhood of an unclosed surface associated with the phase
curve that describes the evolution of surface vertex. The
functions of this class are of the one-soliton form along the
direction of the surface normal. The general constructions are
illustrated by examples.
Key words:
WKB-Maslov complex germ method; semiclassical
asymptotics; Gross-Pitaevskii equation; solitons; symmetry
operators.
pdf (641 kb)
ps (661 kb)
tex (643 kb)
References
- Gross E.P., Structure of a quantized vortex
in boson systems, Nuovo Cimento, 1961, V.20, N 3, 454-477.
- Pitaevskii L.P., Vortex lines in
an imperfect Bose gas, Zh. Eksper. Teor. Fiz., 1961, V.40,
646-651.
- Zakharov V.E., Manakov S.V.,
Novikov S.P., Pitaevsky L.P., Theory of solitons: the inverse
scattering method, Moscow, Nauka, 1980 (English transl.: New
York, Plenum, 1984).
- Zakharov V.E., Shabat A.B.,
Exact theory of two-dimensional self-focusing and one-dimensional
self-modulation of waves in non-linear media, Zh. Eksper.
Teor. Fiz., 1971, V.61, 118-134 (English transl.: Soviet Physics JETP, 1972, V.34, 62-69).
- Hasegawa A., Tappert F., Transmission of
stationary nonlinear optical pulse in dispersive dielectric
fibres, Appl. Phys. Lett., 1973, V.23, 171-172.
- Mollenauer L.F., Stolen R.H., Gordon J.P., Experimental
observation of picosecond pulse narrowing and solitons in optical
fibres, Phys. Rev. Lett., 1980, V.45, 1095-1098.
- Yuen H.C., Lake B.M., Nonlinear dynamics of deep-water
gravity waves, Advances in Applied Mechanics, 1982, V.22,
67-229.
- Dalfovo F., Giorgini S., Pitaevskii L.,
Stringary S., Theory of Bose-Einstein condensation in traped
gases, Rev. Mod. Phys., 1999, V.71, N 3, 463-512.
- Zakharov V.E., Synakh V.S.,
On the character of a singularity under self-focusing, Zh.
Eksper. Teor. Fiz., 1975, V.68, 940-947.
- Karasev M.V., Maslov V.P., Nonlinear Poisson
brackets: geometry and quantization, Moscow, Nauka, 1991 (English
transl.: Ser. Traslations of Mathematical Monographs,
Vol.119, Providence, RI, Amer. Math. Soc., 1993).
- Belov V.V., Trifonov A.Yu., Shapovalov A.V., The
trajectory-coherent approximation and the system of moments for
the Hartree type equation, Int. J. Math. and Math. Sci.,
2002, V.32, N 6, 325-370.
- Lisok A.L., Trifonov A.Yu., Shapovalov A.V.,
The evolution operator of the Hartree-type equation with
a quadratic potential, J. Phys. A.: Math. Gen., 2004, V.37,
4535-4556.
- Maslov V.P., Complex Markov chains and the Feynman
path integral, Moscow, Nauka, 1976.
- Maslov V.P., Equations of the self-consistent field, Itogi
Nauki Tekhn. Ser. Sovrem. Probl. Mat., 1978, V.11, Moscow,
VINITI, 153-234 (English transl.: J. Soviet Math., 1979,
V.11, 123-195).
- Karasev M.V., Maslov V.P., Algebras with general
commutation relations and their applications. II.
Unitary-nonlinear operator equations, Itogi Nauki Tekhn. Ser.
Sovrem. Probl. Mat., 1979, V.13, Moscow, VINITI, 145-267
(English transl.: J. Soviet Math., 1981, V.15, 273-368).
- Maslov V.P.,
Quantization of thermodynamics and ultrasecondary quantization,
Moscow, Computer Sciences Institute Publ., 2001.
- Maslov V.P., Shvedov O.Yu., Quantization in the vicinity of the classical
solutions in N-particle problem and superfluidity,
Teor. Mat. Fiz., 1994, V.98, N 2, 266-288.
- Maslov V.P., Shvedov O.Yu., The complex germ method for the Fock
space. I. Asymptotics like wave packets, Teor. Mat. Fiz.,
1995, V.104, N 2, 310-330.
- Maslov V.P., Shvedov O.Yu., The complex germ method for the Fock space. II.
Asymptotics, corresponding to finite-dimensional isotropic
manifolds, Teor. Mat. Fiz., 1995, V.104, N 3, 479-508.
- Maslov V.P., Shvedov O.Yu.,
The complex germ method in multiparticle problems and in quantum
field theory, Moscow, URSS, 2000.
- Maslov V.P., The canonical operator on the Lagrangian manifold with a
complex germ and a regularizer for pseudodifferential operators
and difference schemes,
Dokl. Akad. Nauk SSSR, 1970, V.195, N 3, 551-554.
- Maslov V.P., The complex WKB method for
nonlinear equations, Moscow, Nauka, 1977 (English transl.: The
complex WKB method for nonlinear equations. I. Linear theory,
Basel - Boston - Berlin, Birkhauser Verlag, 1994).
- Maslov V.P., Operational methods, Moscow, Nauka, 1973 (English transl.:
Moscow, Mir, 1976).
- Belov V.V., Dobrokhotov S.Yu., Semiclassical
Maslov asymptotics with complex phases. I. General appoach,
Teor. Mat. Fiz., 1992, V.130, N 2, 215-254 (English transl.:
Theor. Math. Phys., 1992, V.92, N 2, 843-868).
- Bagrov V.G., Belov V. V., Ternov I.M. Quasiclassical trajectory-coherent
states of a nonrelativistic particle in an arbitrary
electromagnetic field, Teor. Mat. Fiz., 1982, V.50,
390-396.
- Bagrov V.G., Belov V.V., Ternov I.M., Quasiclassical
trajectory-coherent states of a particle in an arbitrary
electromagnetic field, J. Math. Phys., 1983, V.24, N 12,
2855-2859.
- Bagrov V.G., Belov V.V., Trifonov A.Yu., Semiclassical
trajectory-coherent approximation in quantum mechanics: I. High
order corrections to multidimensional time-dependent equations of
Schrödinger type, Ann. Phys. (NY), 1996, V.246, N 2,
231-280.
- Shapovalov A.V., Trifonov A.Yu.,
Semiclassical solutions of the nonlinear Schrödinger equation,
J. Nonlinear Math. Phys., 1999, V.6, N 2, 1-12.
- Malkin M.A., Man'ko V.I.,
Dynamic symmetries and coherent states of quantum systems, Moscow,
Nauka, 1979.
- Popov M.M., Green functions for Schrödinger equation
with quadratic potential, Problemy Mat. Fiz., 1973, N 6,
119-125.
- Dodonov V.V., Malkin I.A., Man'ko V.I., Integrals of motion,
Green functions and coherent states of dynamic systems,
Intern. J. Theor. Phys., 1975, V.14, N 1, 37-54.
- Bang O., Krolikowski W., Wyller J., Rasmussen J.J.,
Collapse arrest and soliton stabilization in nonlocal nonlinear media,
nlin.PS/0201036.
- Shvedov O.Yu., Semiclasical symmetries, Ann. Phys., 2002, V.296, 51-89.
|
|