|
SIGMA 1 (2005), 017, 9 pages math-ph/0511077
https://doi.org/10.3842/SIGMA.2005.017
Subgroups of the Group of Generalized Lorentz Transformations and Their Geometric Invariants
George Bogoslovsky
Skobeltsyn Institute of Nuclear Physics, Moscow State
University, 119992 Moscow, Russia
Received October 06, 2005, in final form November
09, 2005; Published online November 15, 2005
Abstract
It is shown that the group of generalized Lorentz
transformations serves as relativistic symmetry group of a flat
Finslerian event space. Being the generalization of Minkowski
space, the Finslerian event space arises from the spontaneous
breaking of initial gauge symmetry and from the formation of
anisotropic fermion-antifermion condensate. The principle of
generalized Lorentz invariance enables exact taking into account
the influence of condensate on the dynamics of fundamental
fields. In particular, the corresponding generalized Dirac
equation turns out to be nonlinear. We have found two noncompact
subgroups of the group of generalized Lorentz symmetry and their
geometric invariants. These subgroups play a key role in
constructing exact solutions of such equation.
Key words:
Lorentz, Poincaré and gauge invariance; spontaneous
symmetry breaking; Finslerian space-time.
pdf (187 kb)
ps (136 kb)
tex (13 kb)
References
- Kostelecký A., Samuel S.,
Spontaneous breaking of Lorentz symmetry in string theory,
Phys. Rev. D, 1989, V.39, N 2, 683-685.
- Colladay D., Kostelecký A., CPT violation
and the standard model, Phys. Rev. D, 1997, V.55, N 11,
6760-6774,
hep-ph/9703464.
Colladay D., Kostelecký A., Lorentz-violating
extension of the standard model, Phys. Rev. D, 1998, V.58,
116002, hep-ph/9809521.
- Kostelecký A., Gravity, Lorentz violation, and the standard model,
Phys. Rev. D, 2004, V.69, 105009, hep-th/0312310.
- Kostelecký A. (Editor), CPT and Lorentz symmetry III,
Singapore, World Scientific, 2005.
- Allen R.E., Yokoo S., Searching for Lorentz violation,
Nucl. Phys. Proc. Suppl. B, 2004, V.134, 139-146,
hep-th/0402154.
- Cardone F., Mignani R., Broken Lorentz
invariance and metric description of interactions in a deformed
Minkowski space, Found. Phys., 1999, V.29, N 11, 1735-1783.
- Bogoslovsky G.Yu., A special relativistic theory
of the locally anisotropic space-time, Nuovo Cim. B, 1977,
V.40, N 1, 99-134.
- Bogoslovsky G.Yu., Theory of locally anisotropic space-time, Moscow, Moscow Univ. Press, 1992.
- Bogoslovsky G.Yu., From the Weyl theory to
a theory of locally anisotropic space-time,
Class. Quantum Grav., 1992,
V.9, 569-575.
Bogoslovsky G.Yu., Finsler model of space-time,
Phys. Part. Nucl., 1993, V.24,
354-379.
Bogoslovsky G.Yu., A viable model of locally anisotropic
space-time and the Finslerian generalization of the relativity
theory, Fortschr. Phys., 1994, V.42, N 2, 143-193.
- Bogoslovsky G.Yu., Goenner H.F., On the
possibility of phase transitions in the geometric structure of
space-time,
Phys. Lett. A, 1998, V.244, 222-228, gr-qc/9804082.
Bogoslovsky G.Yu., Goenner H.F., Finslerian spaces possessing local relativistic symmetry,
Gen. Rel. Grav., 1999, V.31, N 10, 1565-1603, gr-qc/9904081.
- Arbuzov B.A., Muon g-2 anomaly and extra interaction of
composite Higgs in a dynamically broken electroweak theory, hep-ph/0110389.
Arbuzov B.A.,
Spontaneous generation of effective interaction in a
renormalizable quantum field theory model, Teor. Mat. Fiz.,
2004, V.140, N 3, 367-387 (and references therein).
- Winternitz P., Fris I., Invariant
expansions of relativistic amplitudes and subgroups of the proper
Lorentz group, Yadern. Fiz., 1965, V.1, N 5, 889-901.
- Patera J., Winternitz P.,
Zassenhaus H., Continuous subgroups of the fundamental groups of
physics. II. The similitude group, J. Math. Phys., 1975,
V.16, N 8, 1615-1624.
- Bogoslovsky G.Yu., Goenner H.F.,
On the generalization of the fundamental field equations for
locally anisotropic space-time, in Proceedings of XXIV
International Workshop "Fundamental Problems of High Energy
Physics and Field Theory" (June 27-29, 2001, Protvino, Russia),
Editor V.A. Petrov, Protvino, Insitute for High Energy Physics, 2001, 113-125.
Bogoslovsky G.Yu., Goenner H.F., Concerning the generalized
Lorentz symmetry and the generalization of the Dirac
equation, Phys. Lett. A, 2004, V.323, 40-47, hep-th/0402172.
- Fushchych W.I., Zhdanov R.Z., Symmetry
and exact solutions of nonlinear spinor equations,
Phys. Rep., 1989, V.172,
N 4, 123-174.
Fushchych W.I., Zhdanov R.Z., Symmetry and exact solutions of
nonlinear Dirac equations, Kyiv, Mathematical Ukraina Publisher,
1997 (and references therein).
|
|