|
SIGMA 1 (2005), 014, 9 pages math-ph/0511076
https://doi.org/10.3842/SIGMA.2005.014
On Chaotic Dynamics in Rational Polygonal Billiards
Valery Kokshenev
Departamento de Fisica, Universidade Federal de Minas
Gerais, Instituto de Ciencias Exatas, Caixa Postal 702, CEP 30123-970, Belo
Horizonte, MG, Brazil
Received June 23, 2005, in final form October 29, 2005;
Published online November 13, 2005
Abstract
We discuss the interplay between the piece-line regular and
vertex-angle singular boundary effects, related to integrability and chaotic
features in rational polygonal billiards. The approach to controversial
issue of regular and irregular motion in polygons is taken within the
alternative deterministic and stochastic frameworks. The analysis is
developed in terms of the billiard-wall collision distribution and the
particle survival probability, simulated in closed and weakly open polygons,
respectively. In the multi-vertex polygons, the late-time wall-collision
events result in the circular-like regular periodic trajectories (sliding
orbits), which, in the open billiard case are likely transformed into the
surviving collective excitations (vortices). Having no topological analogy
with the regular orbits in the geometrically corresponding circular
billiard, sliding orbits and vortices are well distinguished in the weakly
open polygons via the universal and non-universal relaxation dynamics.
Key words:
polygons; hyperbolic systems with singularities; stochastic
system; chaotic dynamics; anomalous diffusion process.
pdf (381 kb)
ps (268 kb)
tex (959 kb)
References
- Gutkin E., Billiards in polygons, J. Stat. Phys.,
1996, V.83, 7-26.
- Sinai Y.G., Dynamical systems with elastic reflections.
Ergodic properties of dispersing billiards, Russ. Math. Surv.,
1970, V.25, 137-189.
- Bunimovich L.A., On ergodic properties of nowhere
dispersing billiards, Commun. Math. Phys., 1979, V.65, 295-312.
- Cheon T., Cohen T.D., Quantum level statistics of
pseudointegrable billiards, Phys. Rev. Lett., 1989, V.62,
2769-2772.
- Shimizu Y., Shudo A., Polygonal billiards: correspondence
between classical trajectories and quantum eingenstates, Chaos,
Solitons & Fractals, 1995, V.5, 1337-1361.
- Kokshenev V.B., Vicentini E., Physical insight into
superdiffusive dynamics of Sinai billiard through collision statistics,
Phys. A, in press.
- Garrido P.L., Gallavotti G., Billiards correlation
functions, J. Stat. Phys., 1994, V.76, 549-585.
- Chernov N., Entropy, Lyapunov exponents, and mean free path
for billiards, J. Stat. Phys., 1997, V.88, 1-29.
- Garrido P.L., Kolmogorov-Sinai entropy, Lyapunov exponents,
and mean free time in billiard systems, J. Stat. Phys., 1997, V.88,
807-825.
- Vicentini E., Kokshenev V.B., On survival dynamics of
classical systems. Non-chaotic open billiards, Phys. A, 2001,
V.295, 391-408.
- Mantica G., Quantum algorithmic integrability: the metaphor
of classical polygonal billiards, Phys. Rev. E, 2001, V.61,
6434-6443.
- Kokshenev V.B., Vicentini E., From ballistic to Brownian
motion through enhanced diffusion in vertex-splitting polygonal and
disk-dispersing Sinai billiards, Phys. Rev. E, 2002, V.65,
015201-015204(R).
- Metzler R., Klafter J., The random walk's guide to anomalous
diffusion: A fractional dynamics approach, Phys. Rep., 2000, V.339,
1-77.
- Bleher P.M., Statistical properties of two-dimensional
periodic Lorentz gas with infinite horizon, J. Stat. Phys., 1992,
V.66, 315-373.
- Veech W.A., Teichmuller curves in moduli space, Eisenstein
series and an application to triangular billiards, Invent. Math.,
1989, V.97, 553-583.
- Ruijgrok Th., Periodic orbits in triangular billiards,
Acta Phys. Pol., 1991, V.22, 955-981.
- Troubetzkoy S., Recurrence and periodic billiard orbits in
polygons, Reg. Chaotic Dyn., 2004, V.9, 1-12.
- Boshernitzan M., Billiards and rational periodic directions
in polygons, Amer. Math. Monthly, 1992, 522-529.
- Galperin G., Stepin A., Vorobets Ya., Periodic billiard
trajectories in polygons: generating mechanisms, Russ. Math. Surv.,
1992, V.47, 5-80.
- Kokshenev V.B., Nemes M.C., Escape probability for
classically chaotic systems, Phys. A, 2000, V.275, 70-77.
- Kokshenev V.B., Vicentini E., Slow relaxation in weakly open
rational billiards, Phys. Rev. E, 2003, V.68, 026221-026228.
- Bauer W., Bertsch G.F., Decay of ordered and chaotic
systems, Phys. Rev. Lett., 1990, V.65, 2213-2216.
- Pikovsky A.S., Escape exponent for transient chaos
scattering in non-hyperbolic Hamiltonian systems, J. Phys. A: Math. Gen., 1992,
V.25, L477-L481.
- Alt H., Gräf H.-D., Harney H.L., Hofferbert R., Rehfeld
H., Richter A., Schardt P., Decay of classical chaotic systems: The case of
the Bunimovich stadium, Phys. Rev. E, 1996, V.53, 2217-2222.
- Bunimovich L.A., On the rate of decay of correlations in
dynamical systems with chaotic behavior, Sov. Phys. JETP, 1985,
V.62, 842-852.
- Fendrik A.J., Sánchez M.J., Decay of the Sinai well in
D dimensions, Phys. Rev. E, 1995, V.51, 2996-3001.
- Freidman B., Martin R. F., Decay of the velocity
autocorrelation function for the periodic Lorentz gas, Phys. Lett. A, 1984, V.105, 23-26.
- Artuso R., Casati G., Guarneri I., Numerical experiments on
billiards, J. Stat. Phys., 1996, V.83, 145-167.
|
|