|
SIGMA 1 (2005), 013, 6 pages
https://doi.org/10.3842/SIGMA.2005.013
Simple Derivation of Quasinormal Modes for Arbitrary Spins
Iosif Khriplovich and Gennady Ruban
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
Received October 07, 2005, in final form November 05, 2005; Published online November 07, 2005
Abstract
The asymptotically leading term of quasinormal modes
(QNMs) in the Schwarzschild background, wn = - in/2, is
obtained in two straightforward analytical ways for arbitrary
spins.
Key words:
Regge-Wheeler equation; quasinormal modes.
pdf (176 kb)
ps (137 kb)
tex (19 kb)
References
- Regge T., Wheeler J.A., Stability of a Schwarzschild singularity, Phys. Rev.,
1957, V.108, 1063-1069.
- Zerilli F.J., Gravitational field of a particle falling in a Schwarzschild
geometry analyzed in tensor harmonics, Phys. Rev. D, 1970, V.2, 2141-2160.
- Vishveshwara C.V., Scattering of gravitational radiation by a Schwarzschild black hole,
Nature, 1970, V.227, 936-938.
- Press W.H., Long wave trains of gravitational waves from a vibrating black hole,
Astrophys. J., 1971, V.170, L105.
- Leaver E.W., An analytic representation for the quasi-normal modes
of Kerr black holes, Proc. Roy. Soc. London Ser. A, 1985, V.402, 285-298.
- Nollert H.-P., Quasinormal modes of Schwarzschild black holes: the
determination of quasinormal frequencies with very large imaginary
parts, Phys. Rev. D, 1993, V.47, 5253-5258.
- Hod S., Bohr's correspondence principle and the area spectrum of quantum black
holes, Phys. Rev. Lett., 1998, V.81, 4293-4296, gr-qc/9812002.
- Motl L., An analytical computation of asymptotic Schwarzschild
quasinormal frequencies, Adv. Theor. Math. Phys., 2002, V.6, 1135-1162, gr-qc/0212096.
- Motl L., Neitzke A., Asymptotic black hole quasinormal
frequencies, Adv. Theor. Math. Phys., 2003, V.7, 307-330, hep-th/0301173.
- Khriplovich I.B., Quasinormal modes, quantized black holes, and correspondence principle,
Int. J. Mod. Phys. D, 2005, V.14, 181-183, gr-qc/0407111.
- Castello-Branco K.H.C., Konoplya R.A., Zhidenko A., High overtones
of Dirac perturbations of a Schwarzschild black
hole, Phys. Rev. D, 2005, V.71, 047502, 4 pages, hep-th/0411055.
- Jing J., Dirac quasinormal modes of Schwarzschild black hole, Phys. Rev. D, 2005, V.71,
124006, 7 pages, gr-qc/0502023.
- Padmanabhan T., Quasi normal modes: a simple derivation of the level spacing of the frequencies,
Class. Quant. Grav., 2004, V.21, L1-L6, gr-qc/0310027.
- Medved A.J.M., Martin D., Visser M., Dirty black holes: quasinormal
modes, Class. Quant. Grav., 2004, V.21, 1393-1405, gr-qc/0310009.
- Roy Chaudhury T., Padmanabhan T., Quasinormal modes in Schwarzschild-de Sitter spacetime:
a simple derivation of the level spacing of the frequencies,
Phys. Rev. D, 2004, V.69, 064033, 9 pages, gr-qc/0311064.
- Gradshteyn I.S., Ryzhik I.M., Table of
integrals, series and products, New York, Academic Press, 1994.
|
|