|
SIGMA 1 (2005), 010, 12 pages nlin.SI/0511039
https://doi.org/10.3842/SIGMA.2005.010
A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
Pantelis A. Damianou a and Franco Magri b
a) Department of Mathematics and Statistics, University
of Cyprus, 1678, Nicosia, Cyprus
b) Department of Mathematics, University of Milano Bicocca, Via Corsi 58, I 20126 Milano, Italy
Received September 22, 2005, in final form October 24, 2005; Published online October 25, 2005
Abstract
In this paper we propose a new algorithm for obtaining
the rational integrals of the full Kostant-Toda lattice. This new
approach is based on a reduction of a bi-Hamiltonian system on
gl(n, R). This system was obtained by reducing the space
of maps from Zn to GL(n, R) endowed with a structure of
a pair of Lie-algebroids.
Key words:
full Kostant-Toda lattice; integrability; bi-Hamiltonian structure.
pdf (198 kb)
ps (158 kb)
tex (13 kb)
References
- Bogoyavlensky O.I., On perturbations of the periodic Toda
lattice, Comm. Math. Phys., 1976, V.51, 201-209.
- Constantinides K., Generalized full
Kostant-Toda lattices, Master Thesis, Department of Mathematics
and Statistics, University of Cyprus, 2003.
- Damianou P.A., Paschalis P., Sophocleous C., A
tri-Hamiltonian formulation of the full Kostant-Toda lattice,
Lett. Math. Phys., 1995, V.34, 17-24.
- Damianou P.A., Multiple Hamiltonian structure of
Bogoyavlensky-Toda lattices, Reviews Math. Phys., 2004, V.16, 175-241.
- Deift P.A., Li L.C., Nanda T., Tomei C., The Toda lattice on a generic
orbit is integrable, Comm. Pure Appl. Math., 1986, V.39, 183-232.
- Ercolani N.M., Flaschka H., Singer S., The Geometry of the
full Kostant-Toda lattice, in Colloque Verdier,
Progress in Mathematics Series, Birkhaeuser Verlag, 1994, 181-225.
- Falqui G., Magri F., Pedroni M.,
Bi-Hamiltonian geometry, Darboux coverings, and linearization of
the KP hierarchy, Comm. Math. Phys., 1998, V.197, 303-324.
- Faybusovich L., Gekhtman M., Elementary Toda orbits and
integrable lattices, J. Math. Phys., 2000, V.41, 2905-2921.
- Flaschka H., On the Toda lattice, Phys. Rev., 1974, V.9, 1924-1925.
- Flaschka H., On the Toda lattice II.
Inverse-scattering solution, Progr. Theor. Phys., 1974, V.51,
703-716.
- Flaschka H., Integrable systems and torus actions, Lecture Notes,
University of Arizona, 1992.
- Fokas A.S., Fuchssteiner B., The Hierarchy of the Benjamin-Ono
equations, Phys. Lett. A, 1981, V.86, 341-345.
- Fuchssteiner B., Master symmetries and higher order time-dependent
symmetries and conserved densities of nonlinear evolution equations,
Progr. Theor. Phys., 1983, V.70, 1508-1522.
- Gelfand I.M., Zakharevich I., On the local
geometry of a bi-Hamiltonian structure, in
The Gelfand Mathematical Seminars 1990-1992, Editors L. Corvin et al.,
Boston, Birkhauser, 1993, 51-112.
- Henon M., Integrals of the Toda lattice, Phys. Rev. B, 1974, V.9, 1921-1923.
- Kostant B., The solution to a generalized Toda lattice and
representation theory, Adv. Math., V.34, 195-338.
- Kupershmidt B., Discrete Lax equations and
differential-difference calculus, Asterisque, 1985, V.123, 1-212.
- Magri F., A simple model of the integrable Hamiltonian
equation, J. Math. Phys., 1978, V.19, 1156-1162.
- Manakov S., Complete integrability and
stochastization of discrete dynamical systems, Zh. Exp. Teor.
Fiz., 1974, V.67, 543-555.
- Meucci A., Compatible Lie algebroids and the periodic Toda
lattice, J. Geom. Phys., 2000, V.35, 273-287.
- Meucci A., Toda equations, bi-Hamiltonian systems, and
compatible Lie algebroids, Math. Phys. Analysis Geom., 2001, V.4, 131-146.
- Moser J., Finitely many mass points on the line
under the influence of an exponential potential - an integrable
system, Lect. Notes Phys., 1976, V.38, 97-101.
- Moser J., Three integrable Hamiltonian systems
connected with isospectral deformations,
Adv. Math., 1975, V.16, 197-220.
- Singer S., The geometry of the full Toda lattice, Ph.D. Dissertation, Courant
Institute, 1991.
- Toda M., One-dimensional dual transformation, J.
Phys. Soc. Japan, 1967, V.22, 431-436.
|
|